Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138517967> ?p ?o ?g. }
- W2138517967 endingPage "S45" @default.
- W2138517967 startingPage "S31" @default.
- W2138517967 abstract "Computer-aided diagnosis (CAD) has been an active area of study in medical image analysis. A filter for the enhancement of lesions plays an important role for improving the sensitivity and specificity in CAD schemes. The filter enhances objects similar to a model employed in the filter; e.g. a blob-enhancement filter based on the Hessian matrix enhances sphere-like objects. Actual lesions, however, often differ from a simple model; e.g. a lung nodule is generally modeled as a solid sphere, but there are nodules of various shapes and with internal inhomogeneities such as a nodule with spiculations and ground-glass opacity. Thus, conventional filters often fail to enhance actual lesions. Our purpose in this study was to develop a supervised filter for the enhancement of actual lesions (as opposed to a lesion model) by use of a massive-training artificial neural network (MTANN) in a CAD scheme for detection of lung nodules in CT. The MTANN filter was trained with actual nodules in CT images to enhance actual patterns of nodules. By use of the MTANN filter, the sensitivity and specificity of our CAD scheme were improved substantially. With a database of 69 lung cancers, nodule candidate detection by the MTANN filter achieved a 97% sensitivity with 6.7 false positives (FPs) per section, whereas nodule candidate detection by a difference-image technique achieved a 96% sensitivity with 19.3 FPs per section. Classification-MTANNs were applied for further reduction of the FPs. The classification-MTANNs removed 60% of the FPs with a loss of one true positive; thus, it achieved a 96% sensitivity with 2.7 FPs per section. Overall, with our CAD scheme based on the MTANN filter and classification-MTANNs, an 84% sensitivity with 0.5 FPs per section was achieved." @default.
- W2138517967 created "2016-06-24" @default.
- W2138517967 creator A5050949810 @default.
- W2138517967 date "2009-08-18" @default.
- W2138517967 modified "2023-09-30" @default.
- W2138517967 title "A supervised ‘lesion-enhancement’ filter by use of a massive-training artificial neural network (MTANN) in computer-aided diagnosis (CAD)" @default.
- W2138517967 cites W1498436455 @default.
- W2138517967 cites W1546630874 @default.
- W2138517967 cites W1965479476 @default.
- W2138517967 cites W1969786749 @default.
- W2138517967 cites W1970089523 @default.
- W2138517967 cites W1970256048 @default.
- W2138517967 cites W1971735090 @default.
- W2138517967 cites W1978336831 @default.
- W2138517967 cites W1979077262 @default.
- W2138517967 cites W1979982202 @default.
- W2138517967 cites W1994127966 @default.
- W2138517967 cites W1996440595 @default.
- W2138517967 cites W2002774010 @default.
- W2138517967 cites W2005134193 @default.
- W2138517967 cites W2023522838 @default.
- W2138517967 cites W2027594868 @default.
- W2138517967 cites W2038839211 @default.
- W2138517967 cites W2041831159 @default.
- W2138517967 cites W2054648089 @default.
- W2138517967 cites W2055225427 @default.
- W2138517967 cites W2083432437 @default.
- W2138517967 cites W2101632303 @default.
- W2138517967 cites W2103311002 @default.
- W2138517967 cites W2104775919 @default.
- W2138517967 cites W2107233998 @default.
- W2138517967 cites W2112834177 @default.
- W2138517967 cites W2114973443 @default.
- W2138517967 cites W2127085684 @default.
- W2138517967 cites W2128392486 @default.
- W2138517967 cites W2133059825 @default.
- W2138517967 cites W2137865578 @default.
- W2138517967 cites W2146911148 @default.
- W2138517967 cites W2167762696 @default.
- W2138517967 cites W2170698529 @default.
- W2138517967 cites W4251310582 @default.
- W2138517967 doi "https://doi.org/10.1088/0031-9155/54/18/s03" @default.
- W2138517967 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2782432" @default.
- W2138517967 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19687563" @default.
- W2138517967 hasPublicationYear "2009" @default.
- W2138517967 type Work @default.
- W2138517967 sameAs 2138517967 @default.
- W2138517967 citedByCount "58" @default.
- W2138517967 countsByYear W21385179672012 @default.
- W2138517967 countsByYear W21385179672013 @default.
- W2138517967 countsByYear W21385179672014 @default.
- W2138517967 countsByYear W21385179672015 @default.
- W2138517967 countsByYear W21385179672016 @default.
- W2138517967 countsByYear W21385179672017 @default.
- W2138517967 countsByYear W21385179672018 @default.
- W2138517967 countsByYear W21385179672019 @default.
- W2138517967 countsByYear W21385179672021 @default.
- W2138517967 countsByYear W21385179672022 @default.
- W2138517967 countsByYear W21385179672023 @default.
- W2138517967 crossrefType "journal-article" @default.
- W2138517967 hasAuthorship W2138517967A5050949810 @default.
- W2138517967 hasBestOaLocation W21385179672 @default.
- W2138517967 hasConcept C106131492 @default.
- W2138517967 hasConcept C127413603 @default.
- W2138517967 hasConcept C151730666 @default.
- W2138517967 hasConcept C153180895 @default.
- W2138517967 hasConcept C154945302 @default.
- W2138517967 hasConcept C194789388 @default.
- W2138517967 hasConcept C21200559 @default.
- W2138517967 hasConcept C24326235 @default.
- W2138517967 hasConcept C2776731575 @default.
- W2138517967 hasConcept C2779549770 @default.
- W2138517967 hasConcept C31972630 @default.
- W2138517967 hasConcept C41008148 @default.
- W2138517967 hasConcept C50644808 @default.
- W2138517967 hasConcept C55493867 @default.
- W2138517967 hasConcept C64869954 @default.
- W2138517967 hasConcept C86803240 @default.
- W2138517967 hasConceptScore W2138517967C106131492 @default.
- W2138517967 hasConceptScore W2138517967C127413603 @default.
- W2138517967 hasConceptScore W2138517967C151730666 @default.
- W2138517967 hasConceptScore W2138517967C153180895 @default.
- W2138517967 hasConceptScore W2138517967C154945302 @default.
- W2138517967 hasConceptScore W2138517967C194789388 @default.
- W2138517967 hasConceptScore W2138517967C21200559 @default.
- W2138517967 hasConceptScore W2138517967C24326235 @default.
- W2138517967 hasConceptScore W2138517967C2776731575 @default.
- W2138517967 hasConceptScore W2138517967C2779549770 @default.
- W2138517967 hasConceptScore W2138517967C31972630 @default.
- W2138517967 hasConceptScore W2138517967C41008148 @default.
- W2138517967 hasConceptScore W2138517967C50644808 @default.
- W2138517967 hasConceptScore W2138517967C55493867 @default.
- W2138517967 hasConceptScore W2138517967C64869954 @default.
- W2138517967 hasConceptScore W2138517967C86803240 @default.
- W2138517967 hasIssue "18" @default.
- W2138517967 hasLocation W21385179671 @default.
- W2138517967 hasLocation W21385179672 @default.
- W2138517967 hasLocation W21385179673 @default.