Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138556348> ?p ?o ?g. }
- W2138556348 endingPage "303" @default.
- W2138556348 startingPage "293" @default.
- W2138556348 abstract "With the aim of understanding the flux distributions across a metabolic network, i.e. within living cells, Principal Component Analysis (PCA) has been proposed to obtain a set of orthogonal components (pathways) capturing most of the variance in the flux data. The problems with this method are (i) that no additional information can be included in the model, and (ii) that orthogonality imposes a hard constraint, not always reasonably. To overcome these drawbacks, here we propose to use a more flexible approach such as Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) to obtain this set of biological pathways through the network. By using this method, different constraints can be included in the model, and the same source of variability can be present in different pathways, which is reasonable from a biological standpoint. This work follows a methodology developed for Pichia pastoris cultures grown on different carbon sources, lately presented in González-Martínez et al. (2014). In this paper a different grey modelling approach, which aims to incorporate a priori knowledge through constraints on the modelling algorithms, is applied to the same case of study. The results of both models are compared to show their strengths and weaknesses." @default.
- W2138556348 created "2016-06-24" @default.
- W2138556348 creator A5008272570 @default.
- W2138556348 creator A5014406190 @default.
- W2138556348 creator A5036560247 @default.
- W2138556348 creator A5038936150 @default.
- W2138556348 creator A5038963177 @default.
- W2138556348 creator A5078514959 @default.
- W2138556348 date "2015-03-01" @default.
- W2138556348 modified "2023-10-17" @default.
- W2138556348 title "MCR-ALS on metabolic networks: Obtaining more meaningful pathways" @default.
- W2138556348 cites W1973934170 @default.
- W2138556348 cites W1981041178 @default.
- W2138556348 cites W1981656731 @default.
- W2138556348 cites W1982116065 @default.
- W2138556348 cites W1982309495 @default.
- W2138556348 cites W1992402414 @default.
- W2138556348 cites W1993419109 @default.
- W2138556348 cites W1993473978 @default.
- W2138556348 cites W1995365737 @default.
- W2138556348 cites W1997670376 @default.
- W2138556348 cites W1999107405 @default.
- W2138556348 cites W1999715223 @default.
- W2138556348 cites W2000210540 @default.
- W2138556348 cites W2003835605 @default.
- W2138556348 cites W2012991302 @default.
- W2138556348 cites W2013636334 @default.
- W2138556348 cites W2024057352 @default.
- W2138556348 cites W2024349178 @default.
- W2138556348 cites W2025552689 @default.
- W2138556348 cites W2026089579 @default.
- W2138556348 cites W2031918065 @default.
- W2138556348 cites W2039475346 @default.
- W2138556348 cites W2039902016 @default.
- W2138556348 cites W2040294125 @default.
- W2138556348 cites W2045817305 @default.
- W2138556348 cites W2047228180 @default.
- W2138556348 cites W2049446938 @default.
- W2138556348 cites W2050209553 @default.
- W2138556348 cites W2065033577 @default.
- W2138556348 cites W2069753895 @default.
- W2138556348 cites W2075635465 @default.
- W2138556348 cites W2076863292 @default.
- W2138556348 cites W2083855785 @default.
- W2138556348 cites W2092280582 @default.
- W2138556348 cites W2099373664 @default.
- W2138556348 cites W2107333582 @default.
- W2138556348 cites W2107665951 @default.
- W2138556348 cites W2118521406 @default.
- W2138556348 cites W2120357935 @default.
- W2138556348 cites W2139345901 @default.
- W2138556348 cites W2141053516 @default.
- W2138556348 cites W2143125232 @default.
- W2138556348 cites W2147923184 @default.
- W2138556348 cites W2155250997 @default.
- W2138556348 cites W2162271188 @default.
- W2138556348 cites W2170993095 @default.
- W2138556348 cites W4230588984 @default.
- W2138556348 cites W4238101851 @default.
- W2138556348 doi "https://doi.org/10.1016/j.chemolab.2014.10.004" @default.
- W2138556348 hasPublicationYear "2015" @default.
- W2138556348 type Work @default.
- W2138556348 sameAs 2138556348 @default.
- W2138556348 citedByCount "14" @default.
- W2138556348 countsByYear W21385563482016 @default.
- W2138556348 countsByYear W21385563482017 @default.
- W2138556348 countsByYear W21385563482018 @default.
- W2138556348 countsByYear W21385563482020 @default.
- W2138556348 countsByYear W21385563482021 @default.
- W2138556348 crossrefType "journal-article" @default.
- W2138556348 hasAuthorship W2138556348A5008272570 @default.
- W2138556348 hasAuthorship W2138556348A5014406190 @default.
- W2138556348 hasAuthorship W2138556348A5036560247 @default.
- W2138556348 hasAuthorship W2138556348A5038936150 @default.
- W2138556348 hasAuthorship W2138556348A5038963177 @default.
- W2138556348 hasAuthorship W2138556348A5078514959 @default.
- W2138556348 hasBestOaLocation W21385563482 @default.
- W2138556348 hasConcept C105795698 @default.
- W2138556348 hasConcept C111472728 @default.
- W2138556348 hasConcept C119857082 @default.
- W2138556348 hasConcept C121955636 @default.
- W2138556348 hasConcept C124101348 @default.
- W2138556348 hasConcept C126255220 @default.
- W2138556348 hasConcept C138885662 @default.
- W2138556348 hasConcept C144133560 @default.
- W2138556348 hasConcept C154945302 @default.
- W2138556348 hasConcept C161584116 @default.
- W2138556348 hasConcept C17137986 @default.
- W2138556348 hasConcept C177264268 @default.
- W2138556348 hasConcept C185429906 @default.
- W2138556348 hasConcept C196083921 @default.
- W2138556348 hasConcept C199360897 @default.
- W2138556348 hasConcept C2524010 @default.
- W2138556348 hasConcept C27438332 @default.
- W2138556348 hasConcept C2776036281 @default.
- W2138556348 hasConcept C33923547 @default.
- W2138556348 hasConcept C41008148 @default.
- W2138556348 hasConcept C75553542 @default.