Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138591804> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2138591804 abstract "This paper describes a generalized multivariate statistical analysis technique for prediction of impending failures in electronic and electromechanical equipment. This data-driven prognostic technique is useful in health-monitoring situations where equipment physical models are unavailable or of limited fidelity. Statistical analysis algorithms, integrated into a predictive fault detection (PFD) statistical analysis engine, operate on heterogeneous streams of data from sensors that monitor selected equipment structural and functional parameters. The statistical analysis engine processes input data in two stages - similarity testing followed by trend determination. The input stage algorithm extracts multidimensional feature data samples from the arriving sensor data streams. It then performs statistical comparisons of the feature data samples to corresponding feature patterns from equipment considered to be in nominal operating condition. The nominal-condition data may be obtained from equipment specifications, or it may be derived in situ from the sensor data streams. The algorithm maintains a set of scalar similarity metrics for the equipment being monitored, which it periodically compares with pre-computed thresholds. The thresholds may be adaptive, with values typically functions of the amount and variability of the feature data. The trend determination stage is triggered when a threshold value is exceeded. The trend determination algorithm projects trends of feature data from the similarity analysis onto the future. The automatic data trending computation for a given feature is performed by statistically analyzing a window of the feature data. This analysis addresses a collection of different characteristics of a well-fitting trend, which are then fused into a single trend result per data window. The statistical analysis engine applies the trending results to determine the most probable trend, which in the PFD context is related to the requirements for scheduling of equipment maintenance actions." @default.
- W2138591804 created "2016-06-24" @default.
- W2138591804 creator A5010418565 @default.
- W2138591804 creator A5030279656 @default.
- W2138591804 creator A5036793631 @default.
- W2138591804 creator A5086994211 @default.
- W2138591804 date "2008-10-01" @default.
- W2138591804 modified "2023-09-25" @default.
- W2138591804 title "A multivariate statistical analysis technique for on-line fault prediction" @default.
- W2138591804 cites W1990037113 @default.
- W2138591804 cites W1991750682 @default.
- W2138591804 cites W2123959143 @default.
- W2138591804 cites W2480965226 @default.
- W2138591804 cites W2795739367 @default.
- W2138591804 doi "https://doi.org/10.1109/phm.2008.4711447" @default.
- W2138591804 hasPublicationYear "2008" @default.
- W2138591804 type Work @default.
- W2138591804 sameAs 2138591804 @default.
- W2138591804 citedByCount "12" @default.
- W2138591804 countsByYear W21385918042012 @default.
- W2138591804 countsByYear W21385918042013 @default.
- W2138591804 countsByYear W21385918042014 @default.
- W2138591804 countsByYear W21385918042015 @default.
- W2138591804 countsByYear W21385918042018 @default.
- W2138591804 crossrefType "proceedings-article" @default.
- W2138591804 hasAuthorship W2138591804A5010418565 @default.
- W2138591804 hasAuthorship W2138591804A5030279656 @default.
- W2138591804 hasAuthorship W2138591804A5036793631 @default.
- W2138591804 hasAuthorship W2138591804A5086994211 @default.
- W2138591804 hasConcept C11413529 @default.
- W2138591804 hasConcept C114289077 @default.
- W2138591804 hasConcept C119599485 @default.
- W2138591804 hasConcept C119857082 @default.
- W2138591804 hasConcept C124101348 @default.
- W2138591804 hasConcept C127313418 @default.
- W2138591804 hasConcept C127413603 @default.
- W2138591804 hasConcept C138885662 @default.
- W2138591804 hasConcept C153180895 @default.
- W2138591804 hasConcept C154945302 @default.
- W2138591804 hasConcept C161584116 @default.
- W2138591804 hasConcept C165205528 @default.
- W2138591804 hasConcept C175551986 @default.
- W2138591804 hasConcept C2775846686 @default.
- W2138591804 hasConcept C2776401178 @default.
- W2138591804 hasConcept C41008148 @default.
- W2138591804 hasConcept C41895202 @default.
- W2138591804 hasConcept C45374587 @default.
- W2138591804 hasConcept C89198739 @default.
- W2138591804 hasConceptScore W2138591804C11413529 @default.
- W2138591804 hasConceptScore W2138591804C114289077 @default.
- W2138591804 hasConceptScore W2138591804C119599485 @default.
- W2138591804 hasConceptScore W2138591804C119857082 @default.
- W2138591804 hasConceptScore W2138591804C124101348 @default.
- W2138591804 hasConceptScore W2138591804C127313418 @default.
- W2138591804 hasConceptScore W2138591804C127413603 @default.
- W2138591804 hasConceptScore W2138591804C138885662 @default.
- W2138591804 hasConceptScore W2138591804C153180895 @default.
- W2138591804 hasConceptScore W2138591804C154945302 @default.
- W2138591804 hasConceptScore W2138591804C161584116 @default.
- W2138591804 hasConceptScore W2138591804C165205528 @default.
- W2138591804 hasConceptScore W2138591804C175551986 @default.
- W2138591804 hasConceptScore W2138591804C2775846686 @default.
- W2138591804 hasConceptScore W2138591804C2776401178 @default.
- W2138591804 hasConceptScore W2138591804C41008148 @default.
- W2138591804 hasConceptScore W2138591804C41895202 @default.
- W2138591804 hasConceptScore W2138591804C45374587 @default.
- W2138591804 hasConceptScore W2138591804C89198739 @default.
- W2138591804 hasLocation W21385918041 @default.
- W2138591804 hasOpenAccess W2138591804 @default.
- W2138591804 hasPrimaryLocation W21385918041 @default.
- W2138591804 hasRelatedWork W1494355008 @default.
- W2138591804 hasRelatedWork W1501624740 @default.
- W2138591804 hasRelatedWork W1524726339 @default.
- W2138591804 hasRelatedWork W1572523360 @default.
- W2138591804 hasRelatedWork W1984941792 @default.
- W2138591804 hasRelatedWork W2369440580 @default.
- W2138591804 hasRelatedWork W257053926 @default.
- W2138591804 hasRelatedWork W2884461748 @default.
- W2138591804 hasRelatedWork W807005383 @default.
- W2138591804 hasRelatedWork W2182399080 @default.
- W2138591804 isParatext "false" @default.
- W2138591804 isRetracted "false" @default.
- W2138591804 magId "2138591804" @default.
- W2138591804 workType "article" @default.