Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138596199> ?p ?o ?g. }
- W2138596199 endingPage "2992" @default.
- W2138596199 startingPage "2975" @default.
- W2138596199 abstract "Back-propagation artificial neural networks (ANNs) were trained on a dataset of 104 VMAT2 ligands with experimentally measured log(1/K(i)) values. A set of related descriptors, including topological, geometrical, GETAWAY, aromaticity, and WHIM descriptors, was selected to build nonlinear quantitative structure-activity relationships. A partial least squares (PLS) regression model was also developed for comparison. The nonlinearity of the relationship between molecular descriptors and VMAT2 ligand activity was demonstrated. The obtained neural network model outperformed the PLS model in both the fitting and predictive ability. ANN analysis indicated that the computed activities were in excellent agreement with the experimentally observed values (r(2)=0.91, rmsd=0.225; predictive q(2)=0.82, loormsd=0.316). The generated models were further tested by use of an external prediction set of 15 molecules. The nonlinear ANN model has r(2)=0.93 and root-mean-square errors of 0.282 compared with the experimentally measured activity of the test set. The stability test of the model with regard to data division was found to be positive, indicating that the generated model is predictive. The modeling study also reflected the important role of atomic distribution in the molecules, size, and steric structure of the molecules when they interact with the target, VMAT2. The developed models are expected to be useful in the rational design of new chemical entities as ligands of VMAT2 and for directing synthesis of new molecules in the future." @default.
- W2138596199 created "2016-06-24" @default.
- W2138596199 creator A5001097526 @default.
- W2138596199 creator A5001124751 @default.
- W2138596199 creator A5030875271 @default.
- W2138596199 creator A5037378495 @default.
- W2138596199 creator A5058794772 @default.
- W2138596199 creator A5083049265 @default.
- W2138596199 date "2007-04-01" @default.
- W2138596199 modified "2023-09-26" @default.
- W2138596199 title "Computational neural network analysis of the affinity of lobeline and tetrabenazine analogs for the vesicular monoamine transporter-2" @default.
- W2138596199 cites W1921401097 @default.
- W2138596199 cites W1964227107 @default.
- W2138596199 cites W1978323537 @default.
- W2138596199 cites W1980890656 @default.
- W2138596199 cites W1982740312 @default.
- W2138596199 cites W1988471239 @default.
- W2138596199 cites W1990086122 @default.
- W2138596199 cites W1993180192 @default.
- W2138596199 cites W1999864507 @default.
- W2138596199 cites W2000146111 @default.
- W2138596199 cites W2009777989 @default.
- W2138596199 cites W2015693259 @default.
- W2138596199 cites W2019685130 @default.
- W2138596199 cites W2023504580 @default.
- W2138596199 cites W2023522042 @default.
- W2138596199 cites W2023678043 @default.
- W2138596199 cites W2027082961 @default.
- W2138596199 cites W2036745883 @default.
- W2138596199 cites W2037501945 @default.
- W2138596199 cites W2039196793 @default.
- W2138596199 cites W2048469653 @default.
- W2138596199 cites W2057656722 @default.
- W2138596199 cites W2061832190 @default.
- W2138596199 cites W2069156629 @default.
- W2138596199 cites W2084063085 @default.
- W2138596199 cites W2084276613 @default.
- W2138596199 cites W2087288531 @default.
- W2138596199 cites W2114144700 @default.
- W2138596199 cites W2138563618 @default.
- W2138596199 cites W2143308851 @default.
- W2138596199 cites W2155682761 @default.
- W2138596199 cites W2158308863 @default.
- W2138596199 cites W2158863190 @default.
- W2138596199 cites W2161105275 @default.
- W2138596199 cites W2311897724 @default.
- W2138596199 cites W2416570171 @default.
- W2138596199 cites W2428187695 @default.
- W2138596199 cites W2736575342 @default.
- W2138596199 cites W325841144 @default.
- W2138596199 cites W4231412674 @default.
- W2138596199 cites W4239767745 @default.
- W2138596199 cites W71626638 @default.
- W2138596199 doi "https://doi.org/10.1016/j.bmc.2007.02.013" @default.
- W2138596199 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2001191" @default.
- W2138596199 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17331733" @default.
- W2138596199 hasPublicationYear "2007" @default.
- W2138596199 type Work @default.
- W2138596199 sameAs 2138596199 @default.
- W2138596199 citedByCount "25" @default.
- W2138596199 countsByYear W21385961992012 @default.
- W2138596199 countsByYear W21385961992013 @default.
- W2138596199 countsByYear W21385961992014 @default.
- W2138596199 countsByYear W21385961992016 @default.
- W2138596199 countsByYear W21385961992017 @default.
- W2138596199 countsByYear W21385961992018 @default.
- W2138596199 countsByYear W21385961992020 @default.
- W2138596199 countsByYear W21385961992021 @default.
- W2138596199 crossrefType "journal-article" @default.
- W2138596199 hasAuthorship W2138596199A5001097526 @default.
- W2138596199 hasAuthorship W2138596199A5001124751 @default.
- W2138596199 hasAuthorship W2138596199A5030875271 @default.
- W2138596199 hasAuthorship W2138596199A5037378495 @default.
- W2138596199 hasAuthorship W2138596199A5058794772 @default.
- W2138596199 hasAuthorship W2138596199A5083049265 @default.
- W2138596199 hasBestOaLocation W21385961992 @default.
- W2138596199 hasConcept C116569031 @default.
- W2138596199 hasConcept C119857082 @default.
- W2138596199 hasConcept C121332964 @default.
- W2138596199 hasConcept C147597530 @default.
- W2138596199 hasConcept C152877465 @default.
- W2138596199 hasConcept C154945302 @default.
- W2138596199 hasConcept C155032097 @default.
- W2138596199 hasConcept C158622935 @default.
- W2138596199 hasConcept C164126121 @default.
- W2138596199 hasConcept C164923092 @default.
- W2138596199 hasConcept C169903167 @default.
- W2138596199 hasConcept C170493617 @default.
- W2138596199 hasConcept C178790620 @default.
- W2138596199 hasConcept C185592680 @default.
- W2138596199 hasConcept C186060115 @default.
- W2138596199 hasConcept C201194858 @default.
- W2138596199 hasConcept C22354355 @default.
- W2138596199 hasConcept C32909587 @default.
- W2138596199 hasConcept C41008148 @default.
- W2138596199 hasConcept C46889948 @default.
- W2138596199 hasConcept C48921125 @default.
- W2138596199 hasConcept C50644808 @default.