Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138632244> ?p ?o ?g. }
- W2138632244 endingPage "313" @default.
- W2138632244 startingPage "313" @default.
- W2138632244 abstract "An important issue for agricultural planning purposes is the accurate yield estimation for the numerous crops involved in the planning. Machine learning (ML) is an essential approach for achieving practical and effective solutions for this problem. Many comparisons of ML methods for yield prediction have been made, seeking for the most accurate technique. Generally, the number of evaluated crops and techniques is too low and does not provide enough information for agricultural planning purposes. This paper compares the predictive accuracy of ML and linear regression techniques for crop yield prediction in ten crop datasets. Multiple linear regression, M5-Prime regression trees, perceptron multilayer neural networks, support vector regression and k-nearest neighbor methods were ranked. Four accuracy metrics were used to validate the models: the root mean square error (RMS), root relative square error (RRSE), normalized mean absolute error (MAE), and correlation factor (R). Real data of an irrigation zone of Mexico were used for building the models. Models were tested with samples of two consecutive years. The results show that M5-Prime and k-nearest neighbor techniques obtain the lowest average RMSE errors (5.14 and 4.91), the lowest RRSE errors (79.46% and 79.78%), the lowest average MAE errors (18.12% and 19.42%), and the highest average correlation factors (0.41 and 0.42). Since M5-Prime achieves the largest number of crop yield models with the lowest errors, it is a very suitable tool for massive crop yield prediction in agricultural planning." @default.
- W2138632244 created "2016-06-24" @default.
- W2138632244 creator A5021222428 @default.
- W2138632244 creator A5046072397 @default.
- W2138632244 creator A5072348110 @default.
- W2138632244 date "2014-04-29" @default.
- W2138632244 modified "2023-10-18" @default.
- W2138632244 title "Predictive ability of machine learning methods for massive crop yield prediction" @default.
- W2138632244 cites W1871348509 @default.
- W2138632244 cites W1964357740 @default.
- W2138632244 cites W1966339143 @default.
- W2138632244 cites W1988712392 @default.
- W2138632244 cites W2018471882 @default.
- W2138632244 cites W2020583627 @default.
- W2138632244 cites W2022641889 @default.
- W2138632244 cites W2033531685 @default.
- W2138632244 cites W2056148320 @default.
- W2138632244 cites W2068557772 @default.
- W2138632244 cites W2080010866 @default.
- W2138632244 cites W2084341220 @default.
- W2138632244 cites W2086583262 @default.
- W2138632244 cites W2097071540 @default.
- W2138632244 cites W2097632650 @default.
- W2138632244 cites W2122284941 @default.
- W2138632244 cites W2130292506 @default.
- W2138632244 cites W2145774049 @default.
- W2138632244 cites W4249875616 @default.
- W2138632244 cites W75556350 @default.
- W2138632244 doi "https://doi.org/10.5424/sjar/2014122-4439" @default.
- W2138632244 hasPublicationYear "2014" @default.
- W2138632244 type Work @default.
- W2138632244 sameAs 2138632244 @default.
- W2138632244 citedByCount "129" @default.
- W2138632244 countsByYear W21386322442015 @default.
- W2138632244 countsByYear W21386322442016 @default.
- W2138632244 countsByYear W21386322442017 @default.
- W2138632244 countsByYear W21386322442018 @default.
- W2138632244 countsByYear W21386322442019 @default.
- W2138632244 countsByYear W21386322442020 @default.
- W2138632244 countsByYear W21386322442021 @default.
- W2138632244 countsByYear W21386322442022 @default.
- W2138632244 countsByYear W21386322442023 @default.
- W2138632244 crossrefType "journal-article" @default.
- W2138632244 hasAuthorship W2138632244A5021222428 @default.
- W2138632244 hasAuthorship W2138632244A5046072397 @default.
- W2138632244 hasAuthorship W2138632244A5072348110 @default.
- W2138632244 hasBestOaLocation W21386322441 @default.
- W2138632244 hasConcept C105795698 @default.
- W2138632244 hasConcept C119857082 @default.
- W2138632244 hasConcept C12267149 @default.
- W2138632244 hasConcept C126343540 @default.
- W2138632244 hasConcept C134121241 @default.
- W2138632244 hasConcept C139945424 @default.
- W2138632244 hasConcept C152877465 @default.
- W2138632244 hasConcept C154945302 @default.
- W2138632244 hasConcept C179717631 @default.
- W2138632244 hasConcept C191897082 @default.
- W2138632244 hasConcept C192562407 @default.
- W2138632244 hasConcept C33923547 @default.
- W2138632244 hasConcept C41008148 @default.
- W2138632244 hasConcept C48921125 @default.
- W2138632244 hasConcept C50644808 @default.
- W2138632244 hasConcept C60908668 @default.
- W2138632244 hasConcept C6557445 @default.
- W2138632244 hasConcept C83546350 @default.
- W2138632244 hasConcept C86803240 @default.
- W2138632244 hasConceptScore W2138632244C105795698 @default.
- W2138632244 hasConceptScore W2138632244C119857082 @default.
- W2138632244 hasConceptScore W2138632244C12267149 @default.
- W2138632244 hasConceptScore W2138632244C126343540 @default.
- W2138632244 hasConceptScore W2138632244C134121241 @default.
- W2138632244 hasConceptScore W2138632244C139945424 @default.
- W2138632244 hasConceptScore W2138632244C152877465 @default.
- W2138632244 hasConceptScore W2138632244C154945302 @default.
- W2138632244 hasConceptScore W2138632244C179717631 @default.
- W2138632244 hasConceptScore W2138632244C191897082 @default.
- W2138632244 hasConceptScore W2138632244C192562407 @default.
- W2138632244 hasConceptScore W2138632244C33923547 @default.
- W2138632244 hasConceptScore W2138632244C41008148 @default.
- W2138632244 hasConceptScore W2138632244C48921125 @default.
- W2138632244 hasConceptScore W2138632244C50644808 @default.
- W2138632244 hasConceptScore W2138632244C60908668 @default.
- W2138632244 hasConceptScore W2138632244C6557445 @default.
- W2138632244 hasConceptScore W2138632244C83546350 @default.
- W2138632244 hasConceptScore W2138632244C86803240 @default.
- W2138632244 hasIssue "2" @default.
- W2138632244 hasLocation W21386322441 @default.
- W2138632244 hasLocation W21386322442 @default.
- W2138632244 hasLocation W21386322443 @default.
- W2138632244 hasOpenAccess W2138632244 @default.
- W2138632244 hasPrimaryLocation W21386322441 @default.
- W2138632244 hasRelatedWork W1987874405 @default.
- W2138632244 hasRelatedWork W2066413987 @default.
- W2138632244 hasRelatedWork W2797282764 @default.
- W2138632244 hasRelatedWork W2943894916 @default.
- W2138632244 hasRelatedWork W2966251753 @default.
- W2138632244 hasRelatedWork W2979979539 @default.
- W2138632244 hasRelatedWork W3023264678 @default.