Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138668867> ?p ?o ?g. }
- W2138668867 endingPage "280" @default.
- W2138668867 startingPage "268" @default.
- W2138668867 abstract "An algorithm for recursively computing the total least squares (TLS) solution to the adaptive filtering problem is described. This algorithm requires O(N) multiplications per iteration to effectively track the N-dimensional eigenvector associated with the minimum eigenvalue of an augmented sample covariance matrix. It is shown that the recursive least squares (RLS) algorithm generates biased adaptive filter coefficients when the filter input vector contains additive noise. The TLS solution on the other hand, is seen to produce unbiased solutions. Examples of standard adaptive filtering applications that result in noise being added to the adaptive filter input vector are cited. Computer simulations comparing the relative performance of RLS and recursive TLS are described.< <ETX xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>></ETX>" @default.
- W2138668867 created "2016-06-24" @default.
- W2138668867 creator A5003994559 @default.
- W2138668867 date "1994-01-01" @default.
- W2138668867 modified "2023-10-18" @default.
- W2138668867 title "An efficient recursive total least squares algorithm for FIR adaptive filtering" @default.
- W2138668867 cites W1872796911 @default.
- W2138668867 cites W1872966320 @default.
- W2138668867 cites W1964456437 @default.
- W2138668867 cites W1965533816 @default.
- W2138668867 cites W1985503863 @default.
- W2138668867 cites W1985874053 @default.
- W2138668867 cites W2008229822 @default.
- W2138668867 cites W2008502136 @default.
- W2138668867 cites W2010659045 @default.
- W2138668867 cites W2014556244 @default.
- W2138668867 cites W2015251591 @default.
- W2138668867 cites W2019833178 @default.
- W2138668867 cites W2021450707 @default.
- W2138668867 cites W2030740216 @default.
- W2138668867 cites W2037061607 @default.
- W2138668867 cites W2039534817 @default.
- W2138668867 cites W2050583479 @default.
- W2138668867 cites W2058679464 @default.
- W2138668867 cites W2064894286 @default.
- W2138668867 cites W2071601137 @default.
- W2138668867 cites W2083100664 @default.
- W2138668867 cites W2086397072 @default.
- W2138668867 cites W2086934914 @default.
- W2138668867 cites W2087773207 @default.
- W2138668867 cites W2093356003 @default.
- W2138668867 cites W2095692981 @default.
- W2138668867 cites W2099820792 @default.
- W2138668867 cites W2102793106 @default.
- W2138668867 cites W2105292630 @default.
- W2138668867 cites W2106479198 @default.
- W2138668867 cites W2110075977 @default.
- W2138668867 cites W2111529101 @default.
- W2138668867 cites W2114435407 @default.
- W2138668867 cites W2114971375 @default.
- W2138668867 cites W2118562150 @default.
- W2138668867 cites W2119605738 @default.
- W2138668867 cites W2122134988 @default.
- W2138668867 cites W2127099869 @default.
- W2138668867 cites W2131484793 @default.
- W2138668867 cites W2133628045 @default.
- W2138668867 cites W2133884101 @default.
- W2138668867 cites W2133952959 @default.
- W2138668867 cites W2139518102 @default.
- W2138668867 cites W2144150340 @default.
- W2138668867 cites W2144677984 @default.
- W2138668867 cites W2146051376 @default.
- W2138668867 cites W2152856714 @default.
- W2138668867 cites W2153282906 @default.
- W2138668867 cites W2157850096 @default.
- W2138668867 cites W2159648699 @default.
- W2138668867 cites W2162443378 @default.
- W2138668867 cites W2163751743 @default.
- W2138668867 cites W2165653503 @default.
- W2138668867 cites W2166323357 @default.
- W2138668867 cites W2294798173 @default.
- W2138668867 cites W2482792214 @default.
- W2138668867 cites W2501048560 @default.
- W2138668867 cites W3125188797 @default.
- W2138668867 cites W4236555067 @default.
- W2138668867 doi "https://doi.org/10.1109/78.275601" @default.
- W2138668867 hasPublicationYear "1994" @default.
- W2138668867 type Work @default.
- W2138668867 sameAs 2138668867 @default.
- W2138668867 citedByCount "149" @default.
- W2138668867 countsByYear W21386688672012 @default.
- W2138668867 countsByYear W21386688672013 @default.
- W2138668867 countsByYear W21386688672014 @default.
- W2138668867 countsByYear W21386688672015 @default.
- W2138668867 countsByYear W21386688672016 @default.
- W2138668867 countsByYear W21386688672017 @default.
- W2138668867 countsByYear W21386688672018 @default.
- W2138668867 countsByYear W21386688672019 @default.
- W2138668867 countsByYear W21386688672020 @default.
- W2138668867 countsByYear W21386688672021 @default.
- W2138668867 countsByYear W21386688672022 @default.
- W2138668867 countsByYear W21386688672023 @default.
- W2138668867 crossrefType "journal-article" @default.
- W2138668867 hasAuthorship W2138668867A5003994559 @default.
- W2138668867 hasConcept C102248274 @default.
- W2138668867 hasConcept C105795698 @default.
- W2138668867 hasConcept C106131492 @default.
- W2138668867 hasConcept C11413529 @default.
- W2138668867 hasConcept C115961682 @default.
- W2138668867 hasConcept C121332964 @default.
- W2138668867 hasConcept C145249878 @default.
- W2138668867 hasConcept C154945302 @default.
- W2138668867 hasConcept C158693339 @default.
- W2138668867 hasConcept C185142706 @default.
- W2138668867 hasConcept C185429906 @default.
- W2138668867 hasConcept C31972630 @default.
- W2138668867 hasConcept C33923547 @default.
- W2138668867 hasConcept C41008148 @default.