Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138855712> ?p ?o ?g. }
- W2138855712 endingPage "1604" @default.
- W2138855712 startingPage "1604" @default.
- W2138855712 abstract "Modern analytical chemistry of industrial products is in need of rapid, robust, and cheap analytical methods to continuously monitor product quality parameters. For this reason, spectroscopic methods are often used to control the quality of industrial products in an on-line/in-line regime. Vibrational spectroscopy, including mid-infrared (MIR), Raman, and near-infrared (NIR), is one of the best ways to obtain information about the chemical structures and the quality coefficients of multicomponent mixtures. Together with chemometric algorithms and multivariate data analysis (MDA) methods, which were especially created for the analysis of complicated, noisy, and overlapping signals, NIR spectroscopy shows great results in terms of its accuracy, including classical prediction error, RMSEP. However, it is unclear whether the combined NIR + MDA methods are capable of dealing with much more complex interpolation or extrapolation problems that are inevitably present in real-world applications. In the current study, we try to make a rather general comparison of linear, such as partial least squares or projection to latent structures (PLS); quasi-nonlinear, such as the polynomial version of PLS (Poly-PLS); and intrinsically non-linear, such as artificial neural networks (ANNs), support vector regression (SVR), and least-squares support vector machines (LS-SVM/LSSVM), regression methods in terms of their robustness. As a measure of robustness, we will try to estimate their accuracy when solving interpolation and extrapolation problems. Petroleum and biofuel (biodiesel) systems were chosen as representative examples of real-world samples. Six very different chemical systems that differed in complexity, composition, structure, and properties were studied; these systems were gasoline, ethanol-gasoline biofuel, diesel fuel, aromatic solutions of petroleum macromolecules, petroleum resins in benzene, and biodiesel. Eighteen different sample sets were used in total. General conclusions are made about the applicability of ANN- and SVM-based regression tools in the modern analytical chemistry. The effectiveness of different multivariate algorithms is different when going from classical accuracy to robustness. Neural networks, which are capable of producing very accurate results with respect to classical RMSEP, are not able to solve interpolation problems or, especially, extrapolation problems. The chemometric methods that are based on the support vector machine (SVM) ideology are capable of solving both classical regression and interpolation/extrapolation tasks." @default.
- W2138855712 created "2016-06-24" @default.
- W2138855712 creator A5074125065 @default.
- W2138855712 creator A5076635409 @default.
- W2138855712 date "2012-01-01" @default.
- W2138855712 modified "2023-10-10" @default.
- W2138855712 title "Interpolation and extrapolation problems of multivariate regression in analytical chemistry: benchmarking the robustness on near-infrared (NIR) spectroscopy data" @default.
- W2138855712 cites W1965807998 @default.
- W2138855712 cites W1979773323 @default.
- W2138855712 cites W1990763503 @default.
- W2138855712 cites W1997178704 @default.
- W2138855712 cites W1997804911 @default.
- W2138855712 cites W2004440122 @default.
- W2138855712 cites W2005248543 @default.
- W2138855712 cites W2009957961 @default.
- W2138855712 cites W2014471723 @default.
- W2138855712 cites W2014638889 @default.
- W2138855712 cites W2021123220 @default.
- W2138855712 cites W2024509774 @default.
- W2138855712 cites W2027077885 @default.
- W2138855712 cites W2029372760 @default.
- W2138855712 cites W2030314567 @default.
- W2138855712 cites W2030934507 @default.
- W2138855712 cites W2031727205 @default.
- W2138855712 cites W2035912401 @default.
- W2138855712 cites W2040019138 @default.
- W2138855712 cites W2043903053 @default.
- W2138855712 cites W2053169767 @default.
- W2138855712 cites W2055563201 @default.
- W2138855712 cites W2055817716 @default.
- W2138855712 cites W2064816673 @default.
- W2138855712 cites W2071040878 @default.
- W2138855712 cites W2073503722 @default.
- W2138855712 cites W2087833865 @default.
- W2138855712 cites W2089886615 @default.
- W2138855712 cites W2094083365 @default.
- W2138855712 cites W2099171825 @default.
- W2138855712 cites W2133938857 @default.
- W2138855712 cites W2140196823 @default.
- W2138855712 cites W2148028862 @default.
- W2138855712 cites W2324610862 @default.
- W2138855712 cites W4211009599 @default.
- W2138855712 cites W4211033508 @default.
- W2138855712 cites W4211107172 @default.
- W2138855712 cites W4211171297 @default.
- W2138855712 cites W4232561268 @default.
- W2138855712 cites W4238272501 @default.
- W2138855712 cites W4240335748 @default.
- W2138855712 cites W4243346447 @default.
- W2138855712 cites W4245468220 @default.
- W2138855712 cites W4249989860 @default.
- W2138855712 cites W4256132821 @default.
- W2138855712 doi "https://doi.org/10.1039/c2an15972d" @default.
- W2138855712 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22337290" @default.
- W2138855712 hasPublicationYear "2012" @default.
- W2138855712 type Work @default.
- W2138855712 sameAs 2138855712 @default.
- W2138855712 citedByCount "38" @default.
- W2138855712 countsByYear W21388557122013 @default.
- W2138855712 countsByYear W21388557122014 @default.
- W2138855712 countsByYear W21388557122015 @default.
- W2138855712 countsByYear W21388557122016 @default.
- W2138855712 countsByYear W21388557122017 @default.
- W2138855712 countsByYear W21388557122018 @default.
- W2138855712 countsByYear W21388557122019 @default.
- W2138855712 countsByYear W21388557122020 @default.
- W2138855712 countsByYear W21388557122021 @default.
- W2138855712 countsByYear W21388557122022 @default.
- W2138855712 countsByYear W21388557122023 @default.
- W2138855712 crossrefType "journal-article" @default.
- W2138855712 hasAuthorship W2138855712A5074125065 @default.
- W2138855712 hasAuthorship W2138855712A5076635409 @default.
- W2138855712 hasConcept C104317684 @default.
- W2138855712 hasConcept C105795698 @default.
- W2138855712 hasConcept C11413529 @default.
- W2138855712 hasConcept C119857082 @default.
- W2138855712 hasConcept C12267149 @default.
- W2138855712 hasConcept C132459708 @default.
- W2138855712 hasConcept C151304367 @default.
- W2138855712 hasConcept C154945302 @default.
- W2138855712 hasConcept C185592680 @default.
- W2138855712 hasConcept C186060115 @default.
- W2138855712 hasConcept C22354355 @default.
- W2138855712 hasConcept C33923547 @default.
- W2138855712 hasConcept C41008148 @default.
- W2138855712 hasConcept C55493867 @default.
- W2138855712 hasConcept C63479239 @default.
- W2138855712 hasConcept C86803240 @default.
- W2138855712 hasConceptScore W2138855712C104317684 @default.
- W2138855712 hasConceptScore W2138855712C105795698 @default.
- W2138855712 hasConceptScore W2138855712C11413529 @default.
- W2138855712 hasConceptScore W2138855712C119857082 @default.
- W2138855712 hasConceptScore W2138855712C12267149 @default.
- W2138855712 hasConceptScore W2138855712C132459708 @default.
- W2138855712 hasConceptScore W2138855712C151304367 @default.
- W2138855712 hasConceptScore W2138855712C154945302 @default.
- W2138855712 hasConceptScore W2138855712C185592680 @default.
- W2138855712 hasConceptScore W2138855712C186060115 @default.