Matches in SemOpenAlex for { <https://semopenalex.org/work/W2138889710> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2138889710 endingPage "223" @default.
- W2138889710 startingPage "220" @default.
- W2138889710 abstract "To automatically classify abnormal retinal images from four different categories using artificial neural networks with a high degree of accuracy in minimal time to assist the ophthalmologist in subsequent treatment planning.We used 420 abnormal retinal images from four different categories (non-proliferative diabetic retinopathy, central retinal vein occlusion, central serous retinopathy and central neo-vascularisation membrane). Green channel extraction, histogram equalisation and median filtering were used as image pre-processing techniques, followed by texture-based feature extraction. The application of Kohonen neural networks for pathology identification was also explored.The approach described yielded an average classification accuracy of 97.7% with ±0.8% deviation for individual categories. The average sensitivity and the specificity values are 96% and 98%, respectively. The time taken by the Kohonen neural network to achieve these accurate results was 300±40 s for the 420 images.This study suggests that the approach described can act as a diagnostic tool for retinal disease identification. Simultaneous multi-level classification of abnormal images is possible with high accuracy using artificial neural networks. The results also suggest that the approach is time-efficient, which is essential for ophthalmologic applications." @default.
- W2138889710 created "2016-06-24" @default.
- W2138889710 creator A5000407531 @default.
- W2138889710 creator A5018052220 @default.
- W2138889710 creator A5044672544 @default.
- W2138889710 creator A5073090657 @default.
- W2138889710 creator A5083915188 @default.
- W2138889710 date "2011-06-22" @default.
- W2138889710 modified "2023-10-14" @default.
- W2138889710 title "Automated multi-level pathology identification techniques for abnormal retinal images using artificial neural networks" @default.
- W2138889710 cites W1608292140 @default.
- W2138889710 cites W1989786678 @default.
- W2138889710 cites W2034598891 @default.
- W2138889710 cites W2059036143 @default.
- W2138889710 cites W2062393305 @default.
- W2138889710 cites W2095006131 @default.
- W2138889710 cites W2100115174 @default.
- W2138889710 cites W2109421862 @default.
- W2138889710 cites W2123303981 @default.
- W2138889710 cites W2155323250 @default.
- W2138889710 cites W2158518042 @default.
- W2138889710 cites W2162698990 @default.
- W2138889710 doi "https://doi.org/10.1136/bjophthalmol-2011-300032" @default.
- W2138889710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21697286" @default.
- W2138889710 hasPublicationYear "2011" @default.
- W2138889710 type Work @default.
- W2138889710 sameAs 2138889710 @default.
- W2138889710 citedByCount "8" @default.
- W2138889710 countsByYear W21388897102012 @default.
- W2138889710 countsByYear W21388897102016 @default.
- W2138889710 countsByYear W21388897102022 @default.
- W2138889710 countsByYear W21388897102023 @default.
- W2138889710 crossrefType "journal-article" @default.
- W2138889710 hasAuthorship W2138889710A5000407531 @default.
- W2138889710 hasAuthorship W2138889710A5018052220 @default.
- W2138889710 hasAuthorship W2138889710A5044672544 @default.
- W2138889710 hasAuthorship W2138889710A5073090657 @default.
- W2138889710 hasAuthorship W2138889710A5083915188 @default.
- W2138889710 hasConcept C111168008 @default.
- W2138889710 hasConcept C115961682 @default.
- W2138889710 hasConcept C118487528 @default.
- W2138889710 hasConcept C153180895 @default.
- W2138889710 hasConcept C154945302 @default.
- W2138889710 hasConcept C2780827179 @default.
- W2138889710 hasConcept C41008148 @default.
- W2138889710 hasConcept C50644808 @default.
- W2138889710 hasConcept C52622490 @default.
- W2138889710 hasConcept C53533937 @default.
- W2138889710 hasConcept C71924100 @default.
- W2138889710 hasConcept C81363708 @default.
- W2138889710 hasConceptScore W2138889710C111168008 @default.
- W2138889710 hasConceptScore W2138889710C115961682 @default.
- W2138889710 hasConceptScore W2138889710C118487528 @default.
- W2138889710 hasConceptScore W2138889710C153180895 @default.
- W2138889710 hasConceptScore W2138889710C154945302 @default.
- W2138889710 hasConceptScore W2138889710C2780827179 @default.
- W2138889710 hasConceptScore W2138889710C41008148 @default.
- W2138889710 hasConceptScore W2138889710C50644808 @default.
- W2138889710 hasConceptScore W2138889710C52622490 @default.
- W2138889710 hasConceptScore W2138889710C53533937 @default.
- W2138889710 hasConceptScore W2138889710C71924100 @default.
- W2138889710 hasConceptScore W2138889710C81363708 @default.
- W2138889710 hasIssue "2" @default.
- W2138889710 hasLocation W21388897101 @default.
- W2138889710 hasLocation W21388897102 @default.
- W2138889710 hasOpenAccess W2138889710 @default.
- W2138889710 hasPrimaryLocation W21388897101 @default.
- W2138889710 hasRelatedWork W1498259939 @default.
- W2138889710 hasRelatedWork W1983610137 @default.
- W2138889710 hasRelatedWork W2097458023 @default.
- W2138889710 hasRelatedWork W2146076056 @default.
- W2138889710 hasRelatedWork W2550539038 @default.
- W2138889710 hasRelatedWork W2767563364 @default.
- W2138889710 hasRelatedWork W2811390910 @default.
- W2138889710 hasRelatedWork W2913302899 @default.
- W2138889710 hasRelatedWork W2990472155 @default.
- W2138889710 hasRelatedWork W4312376745 @default.
- W2138889710 hasVolume "96" @default.
- W2138889710 isParatext "false" @default.
- W2138889710 isRetracted "false" @default.
- W2138889710 magId "2138889710" @default.
- W2138889710 workType "article" @default.