Matches in SemOpenAlex for { <https://semopenalex.org/work/W2139063094> ?p ?o ?g. }
- W2139063094 endingPage "143" @default.
- W2139063094 startingPage "125" @default.
- W2139063094 abstract "Structural health monitoring is an important problem of interest in many civil infrastructure and aerospace applications. In the last few decades, many techniques have been investigated to address the detection, estimation, and classification of damage in structural components. One of the key challenges in the development of real-world damage identification systems, however, is variability due to changing environmental and operational conditions. Conventional statistical methods based on static modeling frameworks can prove to be inadequate in a dynamic and fast changing environment, especially when a sufficient amount of data is not available. In this paper, a novel adaptive learning structural damage estimation method is proposed in which the stochastic models are allowed to perpetually change with the time-varying conditions. The adaptive learning framework is based on the use of Dirichlet process (DP) mixture models, which provide the capability of automatically adjusting to structure within the data. Specifically, time–frequency features are extracted from periodically collected structural data (measured sensor signals), that are responses to ultrasonic excitation of the material. These are then modeled using a DP mixture model that allows for a growing, possibly infinite, number of mixture components or latent clusters. Combined with input from physically based damage growth models, the adaptively identified clusters are used in a state-space setting to effectively estimate damage states within the structure under varying external conditions. Additionally, a data selection methodology is implemented to enable judicious selection of informative measurements for maximum performance. The utility of the proposed algorithm is demonstrated by application to the estimation of fatigue-induced damage in an aluminum compact tension sample subjected to variable-amplitude cyclic loading." @default.
- W2139063094 created "2016-06-24" @default.
- W2139063094 creator A5068582650 @default.
- W2139063094 creator A5069246416 @default.
- W2139063094 creator A5082241757 @default.
- W2139063094 creator A5088158268 @default.
- W2139063094 date "2014-04-14" @default.
- W2139063094 modified "2023-09-23" @default.
- W2139063094 title "An adaptive learning damage estimation method for structural health monitoring" @default.
- W2139063094 cites W1956979151 @default.
- W2139063094 cites W1967687583 @default.
- W2139063094 cites W1971886065 @default.
- W2139063094 cites W1972806798 @default.
- W2139063094 cites W1978361715 @default.
- W2139063094 cites W1985110503 @default.
- W2139063094 cites W1985943796 @default.
- W2139063094 cites W1989599332 @default.
- W2139063094 cites W2000619958 @default.
- W2139063094 cites W2002998602 @default.
- W2139063094 cites W2017173031 @default.
- W2139063094 cites W2019282454 @default.
- W2139063094 cites W2027456229 @default.
- W2139063094 cites W2030252916 @default.
- W2139063094 cites W2036490260 @default.
- W2139063094 cites W2036856697 @default.
- W2139063094 cites W2038164396 @default.
- W2139063094 cites W2045020240 @default.
- W2139063094 cites W2049633694 @default.
- W2139063094 cites W2059967951 @default.
- W2139063094 cites W2062353644 @default.
- W2139063094 cites W2069429561 @default.
- W2139063094 cites W2072169887 @default.
- W2139063094 cites W2072816794 @default.
- W2139063094 cites W2077220042 @default.
- W2139063094 cites W2089484716 @default.
- W2139063094 cites W2091797506 @default.
- W2139063094 cites W2101508625 @default.
- W2139063094 cites W2102862543 @default.
- W2139063094 cites W2108674912 @default.
- W2139063094 cites W2108948058 @default.
- W2139063094 cites W2109492308 @default.
- W2139063094 cites W2114332207 @default.
- W2139063094 cites W2115305054 @default.
- W2139063094 cites W2138665083 @default.
- W2139063094 cites W2140439849 @default.
- W2139063094 cites W2143761217 @default.
- W2139063094 cites W2147926935 @default.
- W2139063094 cites W2149197198 @default.
- W2139063094 cites W2151501619 @default.
- W2139063094 cites W2151693816 @default.
- W2139063094 cites W2156335961 @default.
- W2139063094 cites W2162064184 @default.
- W2139063094 cites W2162394527 @default.
- W2139063094 cites W2162976267 @default.
- W2139063094 cites W2165878107 @default.
- W2139063094 cites W2170822267 @default.
- W2139063094 cites W2326395686 @default.
- W2139063094 cites W3104490327 @default.
- W2139063094 cites W4250589301 @default.
- W2139063094 cites W4293508270 @default.
- W2139063094 cites W634575154 @default.
- W2139063094 doi "https://doi.org/10.1177/1045389x14522531" @default.
- W2139063094 hasPublicationYear "2014" @default.
- W2139063094 type Work @default.
- W2139063094 sameAs 2139063094 @default.
- W2139063094 citedByCount "41" @default.
- W2139063094 countsByYear W21390630942014 @default.
- W2139063094 countsByYear W21390630942015 @default.
- W2139063094 countsByYear W21390630942016 @default.
- W2139063094 countsByYear W21390630942017 @default.
- W2139063094 countsByYear W21390630942018 @default.
- W2139063094 countsByYear W21390630942019 @default.
- W2139063094 countsByYear W21390630942020 @default.
- W2139063094 countsByYear W21390630942021 @default.
- W2139063094 countsByYear W21390630942022 @default.
- W2139063094 countsByYear W21390630942023 @default.
- W2139063094 crossrefType "journal-article" @default.
- W2139063094 hasAuthorship W2139063094A5068582650 @default.
- W2139063094 hasAuthorship W2139063094A5069246416 @default.
- W2139063094 hasAuthorship W2139063094A5082241757 @default.
- W2139063094 hasAuthorship W2139063094A5088158268 @default.
- W2139063094 hasConcept C111919701 @default.
- W2139063094 hasConcept C11413529 @default.
- W2139063094 hasConcept C116834253 @default.
- W2139063094 hasConcept C119857082 @default.
- W2139063094 hasConcept C124101348 @default.
- W2139063094 hasConcept C127413603 @default.
- W2139063094 hasConcept C154945302 @default.
- W2139063094 hasConcept C167928553 @default.
- W2139063094 hasConcept C26517878 @default.
- W2139063094 hasConcept C2776247918 @default.
- W2139063094 hasConcept C38652104 @default.
- W2139063094 hasConcept C41008148 @default.
- W2139063094 hasConcept C59822182 @default.
- W2139063094 hasConcept C66938386 @default.
- W2139063094 hasConcept C86803240 @default.
- W2139063094 hasConcept C98045186 @default.
- W2139063094 hasConceptScore W2139063094C111919701 @default.