Matches in SemOpenAlex for { <https://semopenalex.org/work/W2139139718> ?p ?o ?g. }
- W2139139718 endingPage "2226" @default.
- W2139139718 startingPage "2207" @default.
- W2139139718 abstract "Research Article| December 01, 2014 The SuSu Knolls Hydrothermal Field, Eastern Manus Basin, Papua New Guinea: An Active Submarine High-Sulfidation Copper-Gold System Christopher J. Yeats; Christopher J. Yeats † 1CSIRO Division of Earth Science and Resource Engineering, P.O. Box 1130, Bentley, Western Australia, Australia 6102 †Corresponding author: e-mail, christoper.yeats@gmail.com Search for other works by this author on: GSW Google Scholar Joanna M. Parr; Joanna M. Parr 2CSIRO Division of Earth Science and Resource Engineering, P.O. Box 136, North Ryde, New South Wales, Australia 1670 Search for other works by this author on: GSW Google Scholar Raymond A. Binns; Raymond A. Binns 2CSIRO Division of Earth Science and Resource Engineering, P.O. Box 136, North Ryde, New South Wales, Australia 16703Research School of Earth Sciences, Australian National University, Canberra ACT 0200 Australia Search for other works by this author on: GSW Google Scholar J. Bruce Gemmell; J. Bruce Gemmell 4ARC Centre of Excellence in Ore Deposits (CODES),University of Tasmania, Hobart, Tasmania, Australia 7001 Search for other works by this author on: GSW Google Scholar Steven D. Scott Steven D. Scott 5Marine Geology Research Laboratory, Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3B1 Search for other works by this author on: GSW Google Scholar Author and Article Information Christopher J. Yeats † 1CSIRO Division of Earth Science and Resource Engineering, P.O. Box 1130, Bentley, Western Australia, Australia 6102 Joanna M. Parr 2CSIRO Division of Earth Science and Resource Engineering, P.O. Box 136, North Ryde, New South Wales, Australia 1670 Raymond A. Binns 2CSIRO Division of Earth Science and Resource Engineering, P.O. Box 136, North Ryde, New South Wales, Australia 16703Research School of Earth Sciences, Australian National University, Canberra ACT 0200 Australia J. Bruce Gemmell 4ARC Centre of Excellence in Ore Deposits (CODES),University of Tasmania, Hobart, Tasmania, Australia 7001 Steven D. Scott 5Marine Geology Research Laboratory, Department of Earth Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3B1 †Corresponding author: e-mail, christoper.yeats@gmail.com Publisher: Society of Economic Geologists First Online: 09 Mar 2017 Online ISSN: 1554-0774 Print ISSN: 0361-0128 © 2014 Society of Economic Geologists. Economic Geology (2014) 109 (8): 2207–2226. https://doi.org/10.2113/econgeo.109.8.2207 Article history First Online: 09 Mar 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn MailTo Tools Icon Tools Get Permissions Search Site Citation Christopher J. Yeats, Joanna M. Parr, Raymond A. Binns, J. Bruce Gemmell, Steven D. Scott; The SuSu Knolls Hydrothermal Field, Eastern Manus Basin, Papua New Guinea: An Active Submarine High-Sulfidation Copper-Gold System. Economic Geology 2014;; 109 (8): 2207–2226. doi: https://doi.org/10.2113/econgeo.109.8.2207 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyEconomic Geology Search Advanced Search Abstract SuSu Knolls comprises three steep-sided conical volcanic peaks, standing on a N-NW-trending ridge in the eastern Manus basin, a complex zone of convergence between the major Indo-Australian and Pacific plates. The knolls consist of three porphyritic andesite-to-dacite domes, each 1.0 to 1.5 km in diameter, with crests ranging from 1,150 to 1,520 m below sea level. An intense hydrothermal plume, with peak transmission anomalies in excess of 40%, originates from SuSu Knolls, and associated hydrothermal venting, with fluid temperatures exceeding 300°C and sulfide mineralization, has been detected on the crests of all three edifices. The most important of these is the 2.47 million metric ton (Mt) Solwara 1 copper-gold deposit on Suzette Knoll, slated for mining by Nautilus Minerals. The porphyritic dacite is commonly strongly altered by reaction with acidic fluids. Fragments of sulfide mineralization, collected as part of the seafloor talus surrounding the crest of North Su and South Su, are characterized by an assemblage of pyrite-(fukuchilite)-enargite ± covellite-chalcopyrite. By contrast, there are actively venting chimneys on the crest of Suzette that are typically zoned, with chalcopyrite-pyrite-tennantite inner zones and barite-dominated outer zones. The knolls are covered by black sulfidic sediments that contain up to 2.4 wt % Cu and 3.2 ppm Au.Primary feldspars have been obliterated by the hydrothermal activity that ranges from incipient to intense and which is characterized by natroalunite, alunite (North Su only), cristobalite, tridymite, and rare quartz and kaolinite. Most volcanic rocks exhibit a patchy surficial coating of native sulfur, which may also fill vesicles. No altered rocks were dredged from Suzette because of the thick sulfidic sediment cover. Mass-balance calculations for altered and unaltered rock from North and South Su show that major and trace lithophile elements are depleted in the altered rocks, except for Ti, Al, Si, and Zr (all near-immobile), in concert with the destruction of the primary minerals and removal of primary components by acidic fluids. Sulfur and chalcophile trace elements (i.e., As, Au, Ba, Cd, Cu, Mo, Pb, and Se), typically associated with magmatic Cu-Au mineralization, are enriched by orders-of-magnitude in both leached and mineralized rock. Sulfide and native sulfur δ34S values from all three domes range from −7.4 to +0.4‰, indicating a magmatic component for the sulfur. A small group of ore elements (i.e., Ag, Bi, In, Sb, and Zn) are strongly enriched in mineralized breccias and depleted in the altered dacites, suggesting redistribution during alteration.The presence of advanced argillic alteration, the paragenesis of the Fe-Cu-As sulfide assemblage and presence of native sulfur, together with the sulfur isotope evidence for magmatic input into the hydrothermal fluid at SuSu Knolls, are consistent with a submarine high sulfidation magmatic Cu-Au hydrothermal system. Furthermore, the sulfide assemblage pyrite-enargite (±covellite-chalcopyrite) observed at North and South Su, and orders-of-magnitude enrichment of chalcophile elements in both altered and mineralized volcanic rocks, relative to unaltered volcanic rock, are also characteristic of subaerial high sulfidation epithermal mineralization. The SuSu Knolls hydrothermal field is a good example of a modern, high sulfidation, Cu-Au submarine hydrothermal system. You do not have access to this content, please speak to your institutional administrator if you feel you should have access." @default.
- W2139139718 created "2016-06-24" @default.
- W2139139718 creator A5023446654 @default.
- W2139139718 creator A5052774781 @default.
- W2139139718 creator A5063582517 @default.
- W2139139718 creator A5063867251 @default.
- W2139139718 creator A5089011449 @default.
- W2139139718 date "2014-10-30" @default.
- W2139139718 modified "2023-10-09" @default.
- W2139139718 title "The SuSu Knolls Hydrothermal Field, Eastern Manus Basin, Papua New Guinea: An Active Submarine High-Sulfidation Copper-Gold System" @default.
- W2139139718 cites W1963490192 @default.
- W2139139718 cites W1966750556 @default.
- W2139139718 cites W1967670518 @default.
- W2139139718 cites W1974350175 @default.
- W2139139718 cites W1975673491 @default.
- W2139139718 cites W1991565667 @default.
- W2139139718 cites W2002479844 @default.
- W2139139718 cites W2005121896 @default.
- W2139139718 cites W2007766604 @default.
- W2139139718 cites W2008632542 @default.
- W2139139718 cites W2017811628 @default.
- W2139139718 cites W2022149270 @default.
- W2139139718 cites W2028917031 @default.
- W2139139718 cites W2038614693 @default.
- W2139139718 cites W2041399646 @default.
- W2139139718 cites W2042292804 @default.
- W2139139718 cites W2044647613 @default.
- W2139139718 cites W2051802383 @default.
- W2139139718 cites W2057255212 @default.
- W2139139718 cites W2064285665 @default.
- W2139139718 cites W2068814548 @default.
- W2139139718 cites W2070577207 @default.
- W2139139718 cites W2081693429 @default.
- W2139139718 cites W2085733095 @default.
- W2139139718 cites W2092237459 @default.
- W2139139718 cites W2095209242 @default.
- W2139139718 cites W2104076266 @default.
- W2139139718 cites W2111020458 @default.
- W2139139718 cites W2121670251 @default.
- W2139139718 cites W2123109849 @default.
- W2139139718 cites W2123273865 @default.
- W2139139718 cites W2125571496 @default.
- W2139139718 cites W2144388430 @default.
- W2139139718 cites W2149288621 @default.
- W2139139718 cites W2149787672 @default.
- W2139139718 cites W2154628848 @default.
- W2139139718 cites W2162425860 @default.
- W2139139718 cites W2181387605 @default.
- W2139139718 cites W2244244440 @default.
- W2139139718 cites W2256193665 @default.
- W2139139718 cites W2341201825 @default.
- W2139139718 cites W2483806693 @default.
- W2139139718 cites W3020468197 @default.
- W2139139718 cites W3096282881 @default.
- W2139139718 cites W3109746116 @default.
- W2139139718 cites W3112654685 @default.
- W2139139718 doi "https://doi.org/10.2113/econgeo.109.8.2207" @default.
- W2139139718 hasPublicationYear "2014" @default.
- W2139139718 type Work @default.
- W2139139718 sameAs 2139139718 @default.
- W2139139718 citedByCount "47" @default.
- W2139139718 countsByYear W21391397182014 @default.
- W2139139718 countsByYear W21391397182016 @default.
- W2139139718 countsByYear W21391397182017 @default.
- W2139139718 countsByYear W21391397182018 @default.
- W2139139718 countsByYear W21391397182019 @default.
- W2139139718 countsByYear W21391397182020 @default.
- W2139139718 countsByYear W21391397182021 @default.
- W2139139718 countsByYear W21391397182022 @default.
- W2139139718 countsByYear W21391397182023 @default.
- W2139139718 crossrefType "journal-article" @default.
- W2139139718 hasAuthorship W2139139718A5023446654 @default.
- W2139139718 hasAuthorship W2139139718A5052774781 @default.
- W2139139718 hasAuthorship W2139139718A5063582517 @default.
- W2139139718 hasAuthorship W2139139718A5063867251 @default.
- W2139139718 hasAuthorship W2139139718A5089011449 @default.
- W2139139718 hasConcept C127313418 @default.
- W2139139718 hasConcept C161191863 @default.
- W2139139718 hasConcept C166957645 @default.
- W2139139718 hasConcept C205649164 @default.
- W2139139718 hasConcept C2549261 @default.
- W2139139718 hasConcept C2779483780 @default.
- W2139139718 hasConcept C3017739461 @default.
- W2139139718 hasConcept C41008148 @default.
- W2139139718 hasConcept C95457728 @default.
- W2139139718 hasConceptScore W2139139718C127313418 @default.
- W2139139718 hasConceptScore W2139139718C161191863 @default.
- W2139139718 hasConceptScore W2139139718C166957645 @default.
- W2139139718 hasConceptScore W2139139718C205649164 @default.
- W2139139718 hasConceptScore W2139139718C2549261 @default.
- W2139139718 hasConceptScore W2139139718C2779483780 @default.
- W2139139718 hasConceptScore W2139139718C3017739461 @default.
- W2139139718 hasConceptScore W2139139718C41008148 @default.
- W2139139718 hasConceptScore W2139139718C95457728 @default.
- W2139139718 hasIssue "8" @default.
- W2139139718 hasLocation W21391397181 @default.
- W2139139718 hasOpenAccess W2139139718 @default.
- W2139139718 hasPrimaryLocation W21391397181 @default.