Matches in SemOpenAlex for { <https://semopenalex.org/work/W2139603922> ?p ?o ?g. }
- W2139603922 endingPage "30690" @default.
- W2139603922 startingPage "30680" @default.
- W2139603922 abstract "To react to distinct stress situations and to prevent the accumulation of misfolded proteins, all cells employ a number of proteases and chaperones, which together set up an efficient protein quality control system. The functionality of proteins in the cell envelope of Escherichia coli is monitored by the HtrA proteases DegS, DegP, and DegQ. In contrast with DegP and DegS, the structure and function of DegQ has not been addressed in detail. Here, we show that substrate binding triggers the conversion of the resting DegQ hexamer into catalytically active 12- and 24-mers. Interestingly, substrate-induced oligomer reassembly and protease activation depends on the first PDZ domain but not on the second. Therefore, the regulatory mechanism originally identified in DegP should be a common feature of HtrA proteases, most of which encompass only a single PDZ domain. Using a DegQ mutant lacking the second PDZ domain, we determined the high resolution crystal structure of a dodecameric HtrA complex. The nearly identical domain orientation of protease and PDZ domains within 12- and 24-meric HtrA complexes reveals a conserved PDZ1 → L3 → LD/L1/L2 signaling cascade, in which loop L3 senses the repositioned PDZ1 domain of higher order, substrate-engaged particles and activates protease function. Furthermore, our in vitro and in vivo data imply a pH-related function of DegQ in the bacterial cell envelope. To react to distinct stress situations and to prevent the accumulation of misfolded proteins, all cells employ a number of proteases and chaperones, which together set up an efficient protein quality control system. The functionality of proteins in the cell envelope of Escherichia coli is monitored by the HtrA proteases DegS, DegP, and DegQ. In contrast with DegP and DegS, the structure and function of DegQ has not been addressed in detail. Here, we show that substrate binding triggers the conversion of the resting DegQ hexamer into catalytically active 12- and 24-mers. Interestingly, substrate-induced oligomer reassembly and protease activation depends on the first PDZ domain but not on the second. Therefore, the regulatory mechanism originally identified in DegP should be a common feature of HtrA proteases, most of which encompass only a single PDZ domain. Using a DegQ mutant lacking the second PDZ domain, we determined the high resolution crystal structure of a dodecameric HtrA complex. The nearly identical domain orientation of protease and PDZ domains within 12- and 24-meric HtrA complexes reveals a conserved PDZ1 → L3 → LD/L1/L2 signaling cascade, in which loop L3 senses the repositioned PDZ1 domain of higher order, substrate-engaged particles and activates protease function. Furthermore, our in vitro and in vivo data imply a pH-related function of DegQ in the bacterial cell envelope." @default.
- W2139603922 created "2016-06-24" @default.
- W2139603922 creator A5012550396 @default.
- W2139603922 creator A5016800053 @default.
- W2139603922 creator A5022547924 @default.
- W2139603922 creator A5025863416 @default.
- W2139603922 creator A5080279359 @default.
- W2139603922 creator A5090049599 @default.
- W2139603922 date "2011-09-01" @default.
- W2139603922 modified "2023-09-26" @default.
- W2139603922 title "Molecular Adaptation of the DegQ Protease to Exert Protein Quality Control in the Bacterial Cell Envelope" @default.
- W2139603922 cites W1539796472 @default.
- W2139603922 cites W1544799928 @default.
- W2139603922 cites W1649485376 @default.
- W2139603922 cites W1660714996 @default.
- W2139603922 cites W1701180156 @default.
- W2139603922 cites W1740666950 @default.
- W2139603922 cites W1891765765 @default.
- W2139603922 cites W1897988095 @default.
- W2139603922 cites W1963506045 @default.
- W2139603922 cites W1972222322 @default.
- W2139603922 cites W1972559735 @default.
- W2139603922 cites W1980953937 @default.
- W2139603922 cites W1986191025 @default.
- W2139603922 cites W1995017064 @default.
- W2139603922 cites W2000802512 @default.
- W2139603922 cites W2001977333 @default.
- W2139603922 cites W2009714082 @default.
- W2139603922 cites W2013083986 @default.
- W2139603922 cites W2014537095 @default.
- W2139603922 cites W2021040301 @default.
- W2139603922 cites W2026169768 @default.
- W2139603922 cites W2028685242 @default.
- W2139603922 cites W2036371153 @default.
- W2139603922 cites W2042036635 @default.
- W2139603922 cites W2047930189 @default.
- W2139603922 cites W2066109064 @default.
- W2139603922 cites W2070420713 @default.
- W2139603922 cites W2072703129 @default.
- W2139603922 cites W2089220434 @default.
- W2139603922 cites W2089407496 @default.
- W2139603922 cites W2093431241 @default.
- W2139603922 cites W2094160282 @default.
- W2139603922 cites W2096209101 @default.
- W2139603922 cites W2096787646 @default.
- W2139603922 cites W2099680493 @default.
- W2139603922 cites W2100136902 @default.
- W2139603922 cites W2106901733 @default.
- W2139603922 cites W2110445917 @default.
- W2139603922 cites W2110483280 @default.
- W2139603922 cites W2113059497 @default.
- W2139603922 cites W2117445618 @default.
- W2139603922 cites W2118448348 @default.
- W2139603922 cites W2118603057 @default.
- W2139603922 cites W2129751027 @default.
- W2139603922 cites W2132234428 @default.
- W2139603922 cites W2132296494 @default.
- W2139603922 cites W2137477944 @default.
- W2139603922 cites W2139058438 @default.
- W2139603922 cites W2141030573 @default.
- W2139603922 cites W2142774438 @default.
- W2139603922 cites W2145153082 @default.
- W2139603922 cites W2145672685 @default.
- W2139603922 cites W2162856464 @default.
- W2139603922 cites W2162959566 @default.
- W2139603922 cites W2163341755 @default.
- W2139603922 cites W2172287485 @default.
- W2139603922 doi "https://doi.org/10.1074/jbc.m111.243832" @default.
- W2139603922 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3162429" @default.
- W2139603922 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21685389" @default.
- W2139603922 hasPublicationYear "2011" @default.
- W2139603922 type Work @default.
- W2139603922 sameAs 2139603922 @default.
- W2139603922 citedByCount "51" @default.
- W2139603922 countsByYear W21396039222012 @default.
- W2139603922 countsByYear W21396039222013 @default.
- W2139603922 countsByYear W21396039222014 @default.
- W2139603922 countsByYear W21396039222015 @default.
- W2139603922 countsByYear W21396039222016 @default.
- W2139603922 countsByYear W21396039222017 @default.
- W2139603922 countsByYear W21396039222018 @default.
- W2139603922 countsByYear W21396039222019 @default.
- W2139603922 countsByYear W21396039222020 @default.
- W2139603922 countsByYear W21396039222021 @default.
- W2139603922 countsByYear W21396039222022 @default.
- W2139603922 countsByYear W21396039222023 @default.
- W2139603922 crossrefType "journal-article" @default.
- W2139603922 hasAuthorship W2139603922A5012550396 @default.
- W2139603922 hasAuthorship W2139603922A5016800053 @default.
- W2139603922 hasAuthorship W2139603922A5022547924 @default.
- W2139603922 hasAuthorship W2139603922A5025863416 @default.
- W2139603922 hasAuthorship W2139603922A5080279359 @default.
- W2139603922 hasAuthorship W2139603922A5090049599 @default.
- W2139603922 hasBestOaLocation W21396039221 @default.
- W2139603922 hasConcept C104317684 @default.
- W2139603922 hasConcept C143065580 @default.
- W2139603922 hasConcept C144292202 @default.
- W2139603922 hasConcept C154428179 @default.