Matches in SemOpenAlex for { <https://semopenalex.org/work/W2139627330> ?p ?o ?g. }
- W2139627330 endingPage "1063" @default.
- W2139627330 startingPage "1051" @default.
- W2139627330 abstract "Purpose. Multiple imputation (MI) has been proposed for handling missing data in cost-effectiveness analyses (CEAs). In CEAs that use cluster randomized trials (CRTs), the imputation model, like the analysis model, should recognize the hierarchical structure of the data. This paper contrasts a multilevel MI approach that recognizes clustering, with single-level MI and complete case analysis (CCA) in CEAs that use CRTs. Methods. We consider a multilevel MI approach compatible with multilevel analytical models for CEAs that use CRTs. We took fully observed data from a CEA that evaluated an intervention to improve diagnosis of active labor in primiparous women using a CRT (2078 patients, 14 clusters). We generated scenarios with missing costs and outcomes that differed, for example, according to the proportion with missing data (10%–50%), the covariates that predicted missing data (individual, cluster-level), and the missingness mechanism: missing completely at random (MCAR), missing at random (MAR), or missing not at random (MNAR). We estimated incremental net benefits (INBs) for each approach and compared them with the estimates from the fully observed data, the “true” INBs. Results. When costs and outcomes were assumed to be MCAR, the INBs for each approach were similar to the true estimates. When data were MAR, the point estimates from the CCA differed from the true estimates. Multilevel MI provided point estimates and standard errors closer to the true values than did single-level MI across all settings, including those in which a high proportion of observations had cost and outcome data MAR and when data were MNAR. Conclusions. Multilevel MI accommodates the multilevel structure of the data in CEAs that use cluster trials and provides accurate cost-effectiveness estimates across the range of circumstances considered." @default.
- W2139627330 created "2016-06-24" @default.
- W2139627330 creator A5003874514 @default.
- W2139627330 creator A5010342264 @default.
- W2139627330 creator A5089836433 @default.
- W2139627330 creator A5089862218 @default.
- W2139627330 date "2013-08-01" @default.
- W2139627330 modified "2023-10-18" @default.
- W2139627330 title "Multiple Imputation Methods for Handling Missing Data in Cost-effectiveness Analyses That Use Data from Hierarchical Studies" @default.
- W2139627330 cites W1971883474 @default.
- W2139627330 cites W1973240519 @default.
- W2139627330 cites W1973408090 @default.
- W2139627330 cites W1976891556 @default.
- W2139627330 cites W1981747359 @default.
- W2139627330 cites W1995022809 @default.
- W2139627330 cites W2006539568 @default.
- W2139627330 cites W2019391304 @default.
- W2139627330 cites W2023200552 @default.
- W2139627330 cites W2024566912 @default.
- W2139627330 cites W2038503010 @default.
- W2139627330 cites W2040947561 @default.
- W2139627330 cites W2050942519 @default.
- W2139627330 cites W2052018177 @default.
- W2139627330 cites W2065974896 @default.
- W2139627330 cites W2084022176 @default.
- W2139627330 cites W2085438886 @default.
- W2139627330 cites W2098140839 @default.
- W2139627330 cites W2101104998 @default.
- W2139627330 cites W2104199131 @default.
- W2139627330 cites W2112347815 @default.
- W2139627330 cites W2115336678 @default.
- W2139627330 cites W2116084224 @default.
- W2139627330 cites W2118502261 @default.
- W2139627330 cites W2129275242 @default.
- W2139627330 cites W2131319967 @default.
- W2139627330 cites W2131451702 @default.
- W2139627330 cites W2133693790 @default.
- W2139627330 cites W2134843796 @default.
- W2139627330 cites W2154112340 @default.
- W2139627330 cites W2480221688 @default.
- W2139627330 cites W2480680997 @default.
- W2139627330 cites W2483159976 @default.
- W2139627330 cites W2494251579 @default.
- W2139627330 cites W3122781290 @default.
- W2139627330 cites W3124564277 @default.
- W2139627330 doi "https://doi.org/10.1177/0272989x13492203" @default.
- W2139627330 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23913915" @default.
- W2139627330 hasPublicationYear "2013" @default.
- W2139627330 type Work @default.
- W2139627330 sameAs 2139627330 @default.
- W2139627330 citedByCount "35" @default.
- W2139627330 countsByYear W21396273302014 @default.
- W2139627330 countsByYear W21396273302015 @default.
- W2139627330 countsByYear W21396273302016 @default.
- W2139627330 countsByYear W21396273302017 @default.
- W2139627330 countsByYear W21396273302018 @default.
- W2139627330 countsByYear W21396273302019 @default.
- W2139627330 countsByYear W21396273302020 @default.
- W2139627330 countsByYear W21396273302021 @default.
- W2139627330 countsByYear W21396273302022 @default.
- W2139627330 countsByYear W21396273302023 @default.
- W2139627330 crossrefType "journal-article" @default.
- W2139627330 hasAuthorship W2139627330A5003874514 @default.
- W2139627330 hasAuthorship W2139627330A5010342264 @default.
- W2139627330 hasAuthorship W2139627330A5089836433 @default.
- W2139627330 hasAuthorship W2139627330A5089862218 @default.
- W2139627330 hasBestOaLocation W21396273301 @default.
- W2139627330 hasConcept C105795698 @default.
- W2139627330 hasConcept C119043178 @default.
- W2139627330 hasConcept C121684516 @default.
- W2139627330 hasConcept C124101348 @default.
- W2139627330 hasConcept C126322002 @default.
- W2139627330 hasConcept C149782125 @default.
- W2139627330 hasConcept C168743327 @default.
- W2139627330 hasConcept C2777521450 @default.
- W2139627330 hasConcept C33923547 @default.
- W2139627330 hasConcept C41008148 @default.
- W2139627330 hasConcept C41426520 @default.
- W2139627330 hasConcept C53059260 @default.
- W2139627330 hasConcept C58041806 @default.
- W2139627330 hasConcept C71924100 @default.
- W2139627330 hasConcept C73555534 @default.
- W2139627330 hasConcept C9357733 @default.
- W2139627330 hasConcept C95190672 @default.
- W2139627330 hasConceptScore W2139627330C105795698 @default.
- W2139627330 hasConceptScore W2139627330C119043178 @default.
- W2139627330 hasConceptScore W2139627330C121684516 @default.
- W2139627330 hasConceptScore W2139627330C124101348 @default.
- W2139627330 hasConceptScore W2139627330C126322002 @default.
- W2139627330 hasConceptScore W2139627330C149782125 @default.
- W2139627330 hasConceptScore W2139627330C168743327 @default.
- W2139627330 hasConceptScore W2139627330C2777521450 @default.
- W2139627330 hasConceptScore W2139627330C33923547 @default.
- W2139627330 hasConceptScore W2139627330C41008148 @default.
- W2139627330 hasConceptScore W2139627330C41426520 @default.
- W2139627330 hasConceptScore W2139627330C53059260 @default.
- W2139627330 hasConceptScore W2139627330C58041806 @default.
- W2139627330 hasConceptScore W2139627330C71924100 @default.