Matches in SemOpenAlex for { <https://semopenalex.org/work/W2139629920> ?p ?o ?g. }
- W2139629920 endingPage "703" @default.
- W2139629920 startingPage "693" @default.
- W2139629920 abstract "Spatial autocorrelation (SAC) is often observed in species distribution data, and can be caused by exogenous, autocorrelated factors determining species distribution, or by endogenous population processes determining clustering such as dispersal. However, it remains debated whether SAC patterns can actually reveal endogenous processes. We reviewed studies measuring dispersal of the salamander Salamandra salamandra , to formulate a priori hypotheses on the scale at which dispersal is expected to determine population distribution. We then tested the hypotheses by analysing SAC in distribution data, and evaluating whether controlling for the eff ect of environmental variables can reveal endogenous processes. We surveyed 565 streams to obtain species distribution data; we also recorded landscape and microhabitat features known to aff ect the species. We used multiple approaches to tease apart endogenous and exogenous SAC: the analysis of residuals of logistic regression models considering diff erent environmental variables; the analysis of eigenvectors extracted by several implementations of spatial eigenvector mapping. In capture – mark – recapture studies, 98% of individuals moved 500 m or less. Both species distribution and environmental features were strongly autocorrelated. Th e residuals of logistic regression relating species to environmental variables were autocorrelated at distances up to 500 m; analyses considering diff erent sets of environmental variables, or assuming non-linear species habitat relationships, yielded identical results. Th e results of spatial eigenvector mapping strongly depended on the matrix of distances used. Nevertheless, the eigenvectors of models with best fi t were autocorrelated at distances up to 200 – 500 m. Th e concordance between multiple approaches suggests that 500 m is the scale at which dispersal connects breeding localities, increasing probability of occurrence. If exogenous variables are correctly identifi ed, the analysis of SAC can provide important insights on endogenous population processes, such as the fl ow of individuals. SAC analysis can also provide important information for conservation, as the existence of metapopulations or population networks is essential for long term persistence of amphibians." @default.
- W2139629920 created "2016-06-24" @default.
- W2139629920 creator A5012749425 @default.
- W2139629920 creator A5036621588 @default.
- W2139629920 creator A5053064705 @default.
- W2139629920 creator A5072548239 @default.
- W2139629920 date "2011-12-01" @default.
- W2139629920 modified "2023-10-01" @default.
- W2139629920 title "Can patterns of spatial autocorrelation reveal population processes? An analysis with the fire salamander" @default.
- W2139629920 cites W1706555275 @default.
- W2139629920 cites W1965031866 @default.
- W2139629920 cites W1973749534 @default.
- W2139629920 cites W1974326963 @default.
- W2139629920 cites W1974601039 @default.
- W2139629920 cites W1999629485 @default.
- W2139629920 cites W2003315067 @default.
- W2139629920 cites W2006262661 @default.
- W2139629920 cites W2023635392 @default.
- W2139629920 cites W2032349940 @default.
- W2139629920 cites W2043105755 @default.
- W2139629920 cites W2062618519 @default.
- W2139629920 cites W2071931002 @default.
- W2139629920 cites W2075575569 @default.
- W2139629920 cites W2077068378 @default.
- W2139629920 cites W2077386988 @default.
- W2139629920 cites W2078783610 @default.
- W2139629920 cites W2079261887 @default.
- W2139629920 cites W2080244460 @default.
- W2139629920 cites W2081245465 @default.
- W2139629920 cites W2085971088 @default.
- W2139629920 cites W2089792340 @default.
- W2139629920 cites W2091308143 @default.
- W2139629920 cites W2098448965 @default.
- W2139629920 cites W2098601886 @default.
- W2139629920 cites W2099314053 @default.
- W2139629920 cites W2101048165 @default.
- W2139629920 cites W2101968928 @default.
- W2139629920 cites W2104278178 @default.
- W2139629920 cites W2115783811 @default.
- W2139629920 cites W2121258973 @default.
- W2139629920 cites W2126294926 @default.
- W2139629920 cites W2129174500 @default.
- W2139629920 cites W2140868875 @default.
- W2139629920 cites W2142395795 @default.
- W2139629920 cites W2142927122 @default.
- W2139629920 cites W2144745759 @default.
- W2139629920 cites W2155235681 @default.
- W2139629920 cites W2155475871 @default.
- W2139629920 cites W2157993797 @default.
- W2139629920 cites W2160061095 @default.
- W2139629920 cites W2166329490 @default.
- W2139629920 cites W2166673472 @default.
- W2139629920 cites W2170565777 @default.
- W2139629920 cites W3143909338 @default.
- W2139629920 cites W4235009327 @default.
- W2139629920 cites W4298870098 @default.
- W2139629920 doi "https://doi.org/10.1111/j.1600-0587.2011.06483.x" @default.
- W2139629920 hasPublicationYear "2011" @default.
- W2139629920 type Work @default.
- W2139629920 sameAs 2139629920 @default.
- W2139629920 citedByCount "25" @default.
- W2139629920 countsByYear W21396299202012 @default.
- W2139629920 countsByYear W21396299202013 @default.
- W2139629920 countsByYear W21396299202014 @default.
- W2139629920 countsByYear W21396299202015 @default.
- W2139629920 countsByYear W21396299202016 @default.
- W2139629920 countsByYear W21396299202017 @default.
- W2139629920 countsByYear W21396299202018 @default.
- W2139629920 countsByYear W21396299202019 @default.
- W2139629920 countsByYear W21396299202021 @default.
- W2139629920 countsByYear W21396299202022 @default.
- W2139629920 countsByYear W21396299202023 @default.
- W2139629920 crossrefType "journal-article" @default.
- W2139629920 hasAuthorship W2139629920A5012749425 @default.
- W2139629920 hasAuthorship W2139629920A5036621588 @default.
- W2139629920 hasAuthorship W2139629920A5053064705 @default.
- W2139629920 hasAuthorship W2139629920A5072548239 @default.
- W2139629920 hasConcept C105795698 @default.
- W2139629920 hasConcept C144024400 @default.
- W2139629920 hasConcept C149923435 @default.
- W2139629920 hasConcept C158709400 @default.
- W2139629920 hasConcept C159620131 @default.
- W2139629920 hasConcept C18903297 @default.
- W2139629920 hasConcept C205649164 @default.
- W2139629920 hasConcept C2779999439 @default.
- W2139629920 hasConcept C2908647359 @default.
- W2139629920 hasConcept C33923547 @default.
- W2139629920 hasConcept C5297727 @default.
- W2139629920 hasConcept C59598135 @default.
- W2139629920 hasConcept C62649853 @default.
- W2139629920 hasConcept C86803240 @default.
- W2139629920 hasConceptScore W2139629920C105795698 @default.
- W2139629920 hasConceptScore W2139629920C144024400 @default.
- W2139629920 hasConceptScore W2139629920C149923435 @default.
- W2139629920 hasConceptScore W2139629920C158709400 @default.
- W2139629920 hasConceptScore W2139629920C159620131 @default.
- W2139629920 hasConceptScore W2139629920C18903297 @default.
- W2139629920 hasConceptScore W2139629920C205649164 @default.