Matches in SemOpenAlex for { <https://semopenalex.org/work/W2139689595> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2139689595 abstract "(MATH) Guruswami et al [6] show the hardness of coloring 2-colorable 4-uniform hypergraphs on n vertices with ω(log log n over log log log n}) colors assuming NP $notsubseteq$ DTIME(nO log log n)). We obtain a stronger hardness result for approximate coloring of p-colorable 4-uniform hypergraphs for any fixed integer p ≥ 7. We prove that there exists an absolute constant c p ≥ 7, it is hard to color a p-colorable 4-uniform hypergraph with (log n)cp colors assuming NP $not subseteq$ DTIME(2(log n)O(1)).This work builds on the idea of covering complexity of probabilistically checkable proof systems (PCPs) developed in [6] and we introduce some new techniques as well. Firstly, we define a new code which we call the Split Code. This is a variation of the Long Code, but much shorter in length and it reduces the proof size significantly. Split Codes enable us to exploit the special structure of the outer PCP verifier constructed via Raz's Parallel Repetition Theorem [18]. Secondly, we make a novel use of the Split Codes over the domain GF(p) for a prime p. Working over non-boolean domain in fact makes our proof technically simpler than the proof of Guruswami at al [6]." @default.
- W2139689595 created "2016-06-24" @default.
- W2139689595 creator A5067917669 @default.
- W2139689595 date "2002-05-19" @default.
- W2139689595 modified "2023-10-17" @default.
- W2139689595 title "Hardness results for approximate hypergraph coloring" @default.
- W2139689595 cites W1529433769 @default.
- W2139689595 cites W1970259241 @default.
- W2139689595 cites W1991815011 @default.
- W2139689595 cites W2003464009 @default.
- W2139689595 cites W2019578639 @default.
- W2139689595 cites W2085708731 @default.
- W2139689595 cites W2087226760 @default.
- W2139689595 cites W2148352980 @default.
- W2139689595 cites W2162018802 @default.
- W2139689595 cites W2166366531 @default.
- W2139689595 doi "https://doi.org/10.1145/509907.509962" @default.
- W2139689595 hasPublicationYear "2002" @default.
- W2139689595 type Work @default.
- W2139689595 sameAs 2139689595 @default.
- W2139689595 citedByCount "18" @default.
- W2139689595 countsByYear W21396895952013 @default.
- W2139689595 countsByYear W21396895952014 @default.
- W2139689595 countsByYear W21396895952015 @default.
- W2139689595 countsByYear W21396895952019 @default.
- W2139689595 crossrefType "proceedings-article" @default.
- W2139689595 hasAuthorship W2139689595A5067917669 @default.
- W2139689595 hasConcept C118615104 @default.
- W2139689595 hasConcept C173608175 @default.
- W2139689595 hasConcept C2781221856 @default.
- W2139689595 hasConcept C33923547 @default.
- W2139689595 hasConcept C41008148 @default.
- W2139689595 hasConceptScore W2139689595C118615104 @default.
- W2139689595 hasConceptScore W2139689595C173608175 @default.
- W2139689595 hasConceptScore W2139689595C2781221856 @default.
- W2139689595 hasConceptScore W2139689595C33923547 @default.
- W2139689595 hasConceptScore W2139689595C41008148 @default.
- W2139689595 hasLocation W21396895951 @default.
- W2139689595 hasOpenAccess W2139689595 @default.
- W2139689595 hasPrimaryLocation W21396895951 @default.
- W2139689595 hasRelatedWork W1509211761 @default.
- W2139689595 hasRelatedWork W1558545464 @default.
- W2139689595 hasRelatedWork W1984303163 @default.
- W2139689595 hasRelatedWork W2117014006 @default.
- W2139689595 hasRelatedWork W2328387788 @default.
- W2139689595 hasRelatedWork W2358725432 @default.
- W2139689595 hasRelatedWork W2372170743 @default.
- W2139689595 hasRelatedWork W3047022145 @default.
- W2139689595 hasRelatedWork W4233815414 @default.
- W2139689595 hasRelatedWork W99847340 @default.
- W2139689595 isParatext "false" @default.
- W2139689595 isRetracted "false" @default.
- W2139689595 magId "2139689595" @default.
- W2139689595 workType "article" @default.