Matches in SemOpenAlex for { <https://semopenalex.org/work/W2139737300> ?p ?o ?g. }
- W2139737300 endingPage "979" @default.
- W2139737300 startingPage "970" @default.
- W2139737300 abstract "A neural network architecture incorporating time dependency explicitly, proposed recently, for modeling nonlinear nonstationary dynamic systems is further developed in this paper, and three alternate configurations are proposed to represent the dynamics of batch chemical processes. The first configuration consists of L subnets, each having M inputs representing the past samples of process inputs and output; each subnet has a hidden layer with polynomial activation function; the outputs of the hidden layer are combined and acted upon by an explicitly time-dependent modulation function. The outputs of all the subnets are summed to obtain the output prediction. In the second configuration, additional weights are incorporated to obtain a more generalized model. In the third configuration, the subnets are eliminated by incorporating an additional hidden layer consisting of L nodes. Backpropagation learning algorithm is formulated for each of the proposed neural network configuration to determine the weights, the polynomial coefficients, and the modulation function parameters. The modeling capability of the proposed neural network configuration is evaluated by employing it to represent the dynamics of a batch reactor in which a consecutive reaction takes place. The results show that all the three time-varying neural networks configurations are able to represent the batch reactor dynamics accurately, and it is found that the third configuration is exhibiting comparable or better performance over the other two configurations while requiring much smaller number of parameters. The modeling ability of the third configuration is further validated by applying to modeling a semibatch polymerization reactor challenge problem. This paper illustrates that the proposed approach can be applied to represent dynamics of any batch/semibatch process." @default.
- W2139737300 created "2016-06-24" @default.
- W2139737300 creator A5037204103 @default.
- W2139737300 creator A5051805486 @default.
- W2139737300 creator A5072339432 @default.
- W2139737300 date "2014-05-01" @default.
- W2139737300 modified "2023-10-16" @default.
- W2139737300 title "Modeling of Batch Processes Using Explicitly Time-Dependent Artificial Neural Networks" @default.
- W2139737300 cites W1966032096 @default.
- W2139737300 cites W1977814896 @default.
- W2139737300 cites W1987410264 @default.
- W2139737300 cites W1996738442 @default.
- W2139737300 cites W2040622182 @default.
- W2139737300 cites W2059936553 @default.
- W2139737300 cites W2079458565 @default.
- W2139737300 cites W2087787741 @default.
- W2139737300 cites W2095459254 @default.
- W2139737300 cites W2095799820 @default.
- W2139737300 cites W2149361972 @default.
- W2139737300 cites W2151685308 @default.
- W2139737300 cites W2153554202 @default.
- W2139737300 cites W2160587715 @default.
- W2139737300 cites W2161108110 @default.
- W2139737300 cites W2168074109 @default.
- W2139737300 doi "https://doi.org/10.1109/tnnls.2013.2285242" @default.
- W2139737300 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24808042" @default.
- W2139737300 hasPublicationYear "2014" @default.
- W2139737300 type Work @default.
- W2139737300 sameAs 2139737300 @default.
- W2139737300 citedByCount "20" @default.
- W2139737300 countsByYear W21397373002014 @default.
- W2139737300 countsByYear W21397373002016 @default.
- W2139737300 countsByYear W21397373002017 @default.
- W2139737300 countsByYear W21397373002019 @default.
- W2139737300 countsByYear W21397373002020 @default.
- W2139737300 countsByYear W21397373002021 @default.
- W2139737300 countsByYear W21397373002022 @default.
- W2139737300 countsByYear W21397373002023 @default.
- W2139737300 crossrefType "journal-article" @default.
- W2139737300 hasAuthorship W2139737300A5037204103 @default.
- W2139737300 hasAuthorship W2139737300A5051805486 @default.
- W2139737300 hasAuthorship W2139737300A5072339432 @default.
- W2139737300 hasConcept C111919701 @default.
- W2139737300 hasConcept C11413529 @default.
- W2139737300 hasConcept C121332964 @default.
- W2139737300 hasConcept C134306372 @default.
- W2139737300 hasConcept C14036430 @default.
- W2139737300 hasConcept C154945302 @default.
- W2139737300 hasConcept C155032097 @default.
- W2139737300 hasConcept C158622935 @default.
- W2139737300 hasConcept C186060115 @default.
- W2139737300 hasConcept C21099817 @default.
- W2139737300 hasConcept C2775924081 @default.
- W2139737300 hasConcept C31258907 @default.
- W2139737300 hasConcept C33923547 @default.
- W2139737300 hasConcept C38365724 @default.
- W2139737300 hasConcept C41008148 @default.
- W2139737300 hasConcept C47446073 @default.
- W2139737300 hasConcept C50644808 @default.
- W2139737300 hasConcept C62520636 @default.
- W2139737300 hasConcept C78458016 @default.
- W2139737300 hasConcept C86803240 @default.
- W2139737300 hasConcept C90119067 @default.
- W2139737300 hasConcept C98045186 @default.
- W2139737300 hasConceptScore W2139737300C111919701 @default.
- W2139737300 hasConceptScore W2139737300C11413529 @default.
- W2139737300 hasConceptScore W2139737300C121332964 @default.
- W2139737300 hasConceptScore W2139737300C134306372 @default.
- W2139737300 hasConceptScore W2139737300C14036430 @default.
- W2139737300 hasConceptScore W2139737300C154945302 @default.
- W2139737300 hasConceptScore W2139737300C155032097 @default.
- W2139737300 hasConceptScore W2139737300C158622935 @default.
- W2139737300 hasConceptScore W2139737300C186060115 @default.
- W2139737300 hasConceptScore W2139737300C21099817 @default.
- W2139737300 hasConceptScore W2139737300C2775924081 @default.
- W2139737300 hasConceptScore W2139737300C31258907 @default.
- W2139737300 hasConceptScore W2139737300C33923547 @default.
- W2139737300 hasConceptScore W2139737300C38365724 @default.
- W2139737300 hasConceptScore W2139737300C41008148 @default.
- W2139737300 hasConceptScore W2139737300C47446073 @default.
- W2139737300 hasConceptScore W2139737300C50644808 @default.
- W2139737300 hasConceptScore W2139737300C62520636 @default.
- W2139737300 hasConceptScore W2139737300C78458016 @default.
- W2139737300 hasConceptScore W2139737300C86803240 @default.
- W2139737300 hasConceptScore W2139737300C90119067 @default.
- W2139737300 hasConceptScore W2139737300C98045186 @default.
- W2139737300 hasIssue "5" @default.
- W2139737300 hasLocation W21397373001 @default.
- W2139737300 hasLocation W21397373002 @default.
- W2139737300 hasOpenAccess W2139737300 @default.
- W2139737300 hasPrimaryLocation W21397373001 @default.
- W2139737300 hasRelatedWork W2007295947 @default.
- W2139737300 hasRelatedWork W2040019480 @default.
- W2139737300 hasRelatedWork W2244330272 @default.
- W2139737300 hasRelatedWork W2391384657 @default.
- W2139737300 hasRelatedWork W246564837 @default.
- W2139737300 hasRelatedWork W264246345 @default.
- W2139737300 hasRelatedWork W2907792518 @default.