Matches in SemOpenAlex for { <https://semopenalex.org/work/W2140083265> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2140083265 endingPage "2033" @default.
- W2140083265 startingPage "2013" @default.
- W2140083265 abstract "We study an analogue of the classical theory of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A Subscript p Baseline left-parenthesis mu right-parenthesis> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>p</mml:mi> </mml:msub> <mml:mo stretchy=false>(</mml:mo> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>A_p(mu )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> weights in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=double-struck upper R Superscript n> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=double-struck>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>mathbb {R}^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> without assuming that the underlying measure <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=mu> <mml:semantics> <mml:mi>μ<!-- μ --></mml:mi> <mml:annotation encoding=application/x-tex>mu</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is doubling. Then, we obtain weighted norm inequalities for the (centered) Hardy-Littlewood maximal function and corresponding weighted estimates for nonclassical Calderón-Zygmund operators. We also consider commutators of those Calderón- Zygmund operators with bounded mean oscillation functions (<inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper B upper M upper O> <mml:semantics> <mml:mrow> <mml:mi>B</mml:mi> <mml:mi>M</mml:mi> <mml:mi>O</mml:mi> </mml:mrow> <mml:annotation encoding=application/x-tex>BMO</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), extending the main result from R. Coifman, R. Rochberg, and G. Weiss, <italic>Factorization theorems for Hardy spaces in several variables</italic>, Ann. of Math. <bold>103</bold> (1976), 611–635. Finally, we study self–improving properties of Poincaré–B.M.O. type inequalities within this context; more precisely, we show that if <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a locally integrable function satisfying <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=StartFraction 1 Over mu left-parenthesis upper Q right-parenthesis EndFraction integral Underscript upper Q Endscripts StartAbsoluteValue f minus f Subscript upper Q Baseline EndAbsoluteValue d mu less-than-or-equal-to a left-parenthesis upper Q right-parenthesis> <mml:semantics> <mml:mrow> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>Q</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> </mml:mfrac> <mml:msub> <mml:mo>∫<!-- ∫ --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>Q</mml:mi> </mml:mrow> </mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> <mml:mi>f</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:msub> <mml:mi>f</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>Q</mml:mi> </mml:mrow> </mml:msub> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>|</mml:mo> </mml:mrow> <mml:mi>d</mml:mi> <mml:mi>μ<!-- μ --></mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>a</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>Q</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>frac {1}{mu (Q)}int _{Q} |f-f_{Q}| dmu le a(Q)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for all cubes <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper Q> <mml:semantics> <mml:mi>Q</mml:mi> <mml:annotation encoding=application/x-tex>Q</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, then it is possible to deduce a higher <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L Superscript p> <mml:semantics> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>p</mml:mi> </mml:msup> <mml:annotation encoding=application/x-tex>L^p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> integrability result for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f> <mml:semantics> <mml:mi>f</mml:mi> <mml:annotation encoding=application/x-tex>f</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, assuming a certain simple geometric condition on the functional <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=a> <mml:semantics> <mml:mi>a</mml:mi> <mml:annotation encoding=application/x-tex>a</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W2140083265 created "2016-06-24" @default.
- W2140083265 creator A5003424573 @default.
- W2140083265 creator A5016715458 @default.
- W2140083265 date "2002-01-11" @default.
- W2140083265 modified "2023-10-03" @default.
- W2140083265 title "𝐴_{𝑝} weights for nondoubling measures in 𝑅ⁿ and applications" @default.
- W2140083265 cites W1528337088 @default.
- W2140083265 cites W1616363693 @default.
- W2140083265 cites W1966152127 @default.
- W2140083265 cites W1971301862 @default.
- W2140083265 cites W1987443173 @default.
- W2140083265 cites W2007070672 @default.
- W2140083265 cites W2012451693 @default.
- W2140083265 cites W2075842064 @default.
- W2140083265 cites W2105034339 @default.
- W2140083265 cites W2150698352 @default.
- W2140083265 cites W2163174886 @default.
- W2140083265 cites W2187186927 @default.
- W2140083265 cites W2333926574 @default.
- W2140083265 cites W2737902365 @default.
- W2140083265 cites W4238002455 @default.
- W2140083265 cites W4238559238 @default.
- W2140083265 cites W4253840677 @default.
- W2140083265 doi "https://doi.org/10.1090/s0002-9947-02-02922-7" @default.
- W2140083265 hasPublicationYear "2002" @default.
- W2140083265 type Work @default.
- W2140083265 sameAs 2140083265 @default.
- W2140083265 citedByCount "92" @default.
- W2140083265 countsByYear W21400832652012 @default.
- W2140083265 countsByYear W21400832652013 @default.
- W2140083265 countsByYear W21400832652014 @default.
- W2140083265 countsByYear W21400832652015 @default.
- W2140083265 countsByYear W21400832652016 @default.
- W2140083265 countsByYear W21400832652017 @default.
- W2140083265 countsByYear W21400832652018 @default.
- W2140083265 countsByYear W21400832652019 @default.
- W2140083265 countsByYear W21400832652020 @default.
- W2140083265 countsByYear W21400832652021 @default.
- W2140083265 countsByYear W21400832652022 @default.
- W2140083265 countsByYear W21400832652023 @default.
- W2140083265 crossrefType "journal-article" @default.
- W2140083265 hasAuthorship W2140083265A5003424573 @default.
- W2140083265 hasAuthorship W2140083265A5016715458 @default.
- W2140083265 hasBestOaLocation W21400832651 @default.
- W2140083265 hasConcept C11413529 @default.
- W2140083265 hasConcept C154945302 @default.
- W2140083265 hasConcept C18903297 @default.
- W2140083265 hasConcept C2776321320 @default.
- W2140083265 hasConcept C2777299769 @default.
- W2140083265 hasConcept C33923547 @default.
- W2140083265 hasConcept C41008148 @default.
- W2140083265 hasConcept C86803240 @default.
- W2140083265 hasConceptScore W2140083265C11413529 @default.
- W2140083265 hasConceptScore W2140083265C154945302 @default.
- W2140083265 hasConceptScore W2140083265C18903297 @default.
- W2140083265 hasConceptScore W2140083265C2776321320 @default.
- W2140083265 hasConceptScore W2140083265C2777299769 @default.
- W2140083265 hasConceptScore W2140083265C33923547 @default.
- W2140083265 hasConceptScore W2140083265C41008148 @default.
- W2140083265 hasConceptScore W2140083265C86803240 @default.
- W2140083265 hasIssue "5" @default.
- W2140083265 hasLocation W21400832651 @default.
- W2140083265 hasOpenAccess W2140083265 @default.
- W2140083265 hasPrimaryLocation W21400832651 @default.
- W2140083265 hasRelatedWork W151193258 @default.
- W2140083265 hasRelatedWork W1529400504 @default.
- W2140083265 hasRelatedWork W1871911958 @default.
- W2140083265 hasRelatedWork W1892467659 @default.
- W2140083265 hasRelatedWork W2348710178 @default.
- W2140083265 hasRelatedWork W2349865494 @default.
- W2140083265 hasRelatedWork W2808586768 @default.
- W2140083265 hasRelatedWork W2998403542 @default.
- W2140083265 hasRelatedWork W3201926073 @default.
- W2140083265 hasRelatedWork W73525116 @default.
- W2140083265 hasVolume "354" @default.
- W2140083265 isParatext "false" @default.
- W2140083265 isRetracted "false" @default.
- W2140083265 magId "2140083265" @default.
- W2140083265 workType "article" @default.