Matches in SemOpenAlex for { <https://semopenalex.org/work/W2140199078> ?p ?o ?g. }
- W2140199078 endingPage "294" @default.
- W2140199078 startingPage "269" @default.
- W2140199078 abstract "Restricted accessMoreSectionsView PDF ToolsAdd to favoritesDownload CitationsTrack Citations ShareShare onFacebookTwitterLinked InRedditEmail Cite this article Ohl Claus–Dieter, Kurz Thomas, Geisler Reinhard, Lindau Olgert and Lauterborn Werner 1999Bubble dynamics, shock waves and sonoluminescencePhil. Trans. R. Soc. A.357269–294http://doi.org/10.1098/rsta.1999.0327SectionRestricted accessBubble dynamics, shock waves and sonoluminescence Claus–Dieter Ohl Claus–Dieter Ohl Drittes Physikalisches InsitutGermany, Universität Göttingen, Bürgerstraβe 42–44, D–37073 Göttingen, Germany Google Scholar Find this author on PubMed Search for more papers by this author , Thomas Kurz Thomas Kurz Drittes Physikalisches InsitutGermany, Universität Göttingen, Bürgerstraβe 42–44, D–37073 Göttingen, Germany Google Scholar Find this author on PubMed Search for more papers by this author , Reinhard Geisler Reinhard Geisler Drittes Physikalisches InsitutGermany, Universität Göttingen, Bürgerstraβe 42–44, D–37073 Göttingen, Germany Google Scholar Find this author on PubMed Search for more papers by this author , Olgert Lindau Olgert Lindau Drittes Physikalisches InsitutGermany, Universität Göttingen, Bürgerstraβe 42–44, D–37073 Göttingen, Germany Google Scholar Find this author on PubMed Search for more papers by this author and Werner Lauterborn Werner Lauterborn Drittes Physikalisches InsitutGermany, Universität Göttingen, Bürgerstraβe 42–44, D–37073 Göttingen, Germany Google Scholar Find this author on PubMed Search for more papers by this author Claus–Dieter Ohl Claus–Dieter Ohl Drittes Physikalisches InsitutGermany, Universität Göttingen, Bürgerstraβe 42–44, D–37073 Göttingen, Germany Google Scholar Find this author on PubMed Search for more papers by this author , Thomas Kurz Thomas Kurz Drittes Physikalisches InsitutGermany, Universität Göttingen, Bürgerstraβe 42–44, D–37073 Göttingen, Germany Google Scholar Find this author on PubMed Search for more papers by this author , Reinhard Geisler Reinhard Geisler Drittes Physikalisches InsitutGermany, Universität Göttingen, Bürgerstraβe 42–44, D–37073 Göttingen, Germany Google Scholar Find this author on PubMed Search for more papers by this author , Olgert Lindau Olgert Lindau Drittes Physikalisches InsitutGermany, Universität Göttingen, Bürgerstraβe 42–44, D–37073 Göttingen, Germany Google Scholar Find this author on PubMed Search for more papers by this author and Werner Lauterborn Werner Lauterborn Drittes Physikalisches InsitutGermany, Universität Göttingen, Bürgerstraβe 42–44, D–37073 Göttingen, Germany Google Scholar Find this author on PubMed Search for more papers by this author Published:15 February 1999https://doi.org/10.1098/rsta.1999.0327AbstractSound and light emission by bubbles is studied experimentally. Single bubbles kept in a bubble trap and single laser–generated bubbles are investigated using ultrafast and high–speed photography in combination with hydrophones. The optical observation at 20 million frames per second of the shock waves emitted has proven instrumental in revealing the dynamic process upon bubble collapse. When jet formation is initiated by a non–spherically symmetric environment, several distinct shock waves are emitted within a few hundred nanoseconds, originating from different sites of the bubble. The counterjet phenomenon is interpreted in this context as a secondary cavitation event. Furthermore, the light emission of laser–generated cavities (termed cavitation bubble luminescence) is studied with respect to the symmetry of collapse. The prospects of optical cavitation and multibubble trapping in the study of few–bubble systems and bubble interactions are briefly discussed. Finally, the behaviour of bubble clouds, their oscillations, acoustic noise and light emission are described. Depending on the strength of the driving sound field, period doubling and chaotic oscillations of the collective bubble dynamics are observed. Previous ArticleNext Article VIEW FULL TEXT DOWNLOAD PDF FiguresRelatedReferencesDetailsCited by Lai G, Geng S, Zheng H, Yao Z, Zhong Q and Wang F (2021) Early Dynamics of a Laser-Induced Underwater Shock Wave, Journal of Fluids Engineering, 10.1115/1.4051385, 144:1, Online publication date: 1-Jan-2022. Huang G, Zhang M, Han L, Ma X and Huang B (2021) Physical investigation of acoustic waves induced by the oscillation and collapse of the single bubble, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2020.105440, 72, (105440), Online publication date: 1-Apr-2021. Li Z, Dong J, Wang L, Zhang Y, Zhuang T, Wang H, Cui X and Wang Z (2021) A power-triggered preparation strategy of nano-structured inorganics: sonosynthesis, Nanoscale Advances, 10.1039/D1NA00038A, 3:9, (2423-2447) Bao H, Zhang H, Gao L, Tang M, Zhang C and Lu J (2021) Experimental investigations of three laser-induced synchronized bubbles, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2020.105375, 71, (105375), Online publication date: 1-Mar-2021. Yang X, Liu C, Wan D and Hu C (2021) Numerical study of the shock wave and pressure induced by single bubble collapse near planar solid wall, Physics of Fluids, 10.1063/5.0055727, 33:7, (073311), Online publication date: 1-Jul-2021. Wilson B, Fan Z, Sreedasyam R, Botvinick E and Venugopalan V (2021) Single-shot interferometric measurement of cavitation bubble dynamics, Optics Letters, 10.1364/OL.416923, 46:6, (1409), Online publication date: 15-Mar-2021. Li Z, Dong J, Zhang H, Zhang Y, Wang H, Cui X and Wang Z (2021) Sonochemical catalysis as a unique strategy for the fabrication of nano-/micro-structured inorganics, Nanoscale Advances, 10.1039/D0NA00753F, 3:1, (41-72) Soyama H (2021) Luminescence intensity of vortex cavitation in a Venturi tube changing with cavitation number, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2020.105389, 71, (105389), Online publication date: 1-Mar-2021. Lee J, Kentish S and Chen G (2021) The Use of Ultrasound in the Recovery of Food Materials: Sonocrystallization and Membrane Processing Innovative Food Processing Technologies, 10.1016/B978-0-08-100596-5.22992-2, (367-392), . Sojahrood A, Haghi H, Porter T, Karshafian R and Kolios M (2021) Experimental and numerical evidence of intensified non-linearity at the microscale: The lipid coated acoustic bubble, Physics of Fluids, 10.1063/5.0051463, 33:7, (072006), Online publication date: 1-Jul-2021. Luo J, Xu W and Khoo B (2021) Stratification effect of air bubble on the shock wave from the collapse of cavitation bubble, Journal of Fluid Mechanics, 10.1017/jfm.2021.368, 919, Online publication date: 25-Jul-2021. Sojahrood A, Haghi H, Karshafian R and Kolios M (2021) Nonlinear dynamics and bifurcation structure of ultrasonically excited lipid coated microbubbles, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2020.105405, 72, (105405), Online publication date: 1-Apr-2021. Gonzalez-Avila S, Denner F and Ohl C (2021) The acoustic pressure generated by the cavitation bubble expansion and collapse near a rigid wall, Physics of Fluids, 10.1063/5.0043822, 33:3, (032118), Online publication date: 1-Mar-2021. USHIRO K, OKADA S, OGASAWARA T and TAKAHIRA H (2021) Measurement of Impulsive Pressure due to the Bubble Collapse near a Wall壁面近傍における気泡崩壊時の衝撃圧力計測, JAPANESE JOURNAL OF MULTIPHASE FLOW, 10.3811/jjmf.2021.008, 35:1, (43-50), Online publication date: 15-Mar-2021. Wu H, Zhou C, Yu H and Li D (2020) Dynamics Characterization of the Acoustically Driven Single Microbubble near the Rigid and Elastic Wall, Instruments and Experimental Techniques, 10.1134/S0020441220040120, 63:4, (583-590), Online publication date: 1-Oct-2020. Zhou Y Controllable design, synthesis and characterization of nanostructured rare earth metal oxides, Physical Sciences Reviews, 10.1515/psr-2018-0084, 5:3 Yu S, Yu T, Song W, Yu X, Qiao J, Wang W, Dong H, Wu Z, Dai L and Li T (2020) Ultrasound-assisted cyanide extraction of gold from gold concentrate at low temperature, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2020.105039, 64, (105039), Online publication date: 1-Jun-2020. Postnikov A (2020) Collapse Dynamics of Hemispherical Cavitation Bubble in Contact with a Solid Boundary, Fluid Dynamics, 10.1134/S0015462820040096, 55:4, (454-464), Online publication date: 1-Jul-2020. Lechner C, Lauterborn W, Koch M and Mettin R (2020) Jet formation from bubbles near a solid boundary in a compressible liquid: Numerical study of distance dependence, Physical Review Fluids, 10.1103/PhysRevFluids.5.093604, 5:9 Huang G, Zhang M, Ma X, Chang Q, Zheng C and Huang B (2020) Dynamic behavior of a single bubble between the free surface and rigid wall, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2020.105147, 67, (105147), Online publication date: 1-Oct-2020. Peters A and el Moctar O (2020) Numerical assessment of cavitation-induced erosion using a multi-scale Euler–Lagrange method, Journal of Fluid Mechanics, 10.1017/jfm.2020.273, 894, Online publication date: 10-Jul-2020. Basumatary J and Wood R (2020) Different methods of measuring synergy between cavitation erosion and corrosion for nickel aluminium bronze in 3.5% NaCl solution, Tribology International, 10.1016/j.triboint.2017.08.006, 147, (104843), Online publication date: 1-Jul-2020. Boyd B, Suslov S, Becker S, Greentree A and Maksymov I (2020) Beamed UV sonoluminescence by aspherical air bubble collapse near liquid-metal microparticles, Scientific Reports, 10.1038/s41598-020-58185-2, 10:1, Online publication date: 1-Dec-2020. Cui P, Zhang A, Wang S and Liu Y (2020) Experimental study on interaction, shock wave emission and ice breaking of two collapsing bubbles, Journal of Fluid Mechanics, 10.1017/jfm.2020.400, 897, Online publication date: 25-Aug-2020. Nikitenko S, Brau M and Pflieger R (2020) Acoustic noise spectra under hydrothermal conditions, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2020.105189, 67, (105189), Online publication date: 1-Oct-2020. Ruby J, Rygg J, Gaffney J, Bachmann B and Collins G (2019) A boundary condition for Guderley’s converging shock problem, Physics of Fluids, 10.1063/1.5130769, 31:12, (126104), Online publication date: 1-Dec-2019. Stevanović K, Bubanja I and Stanisavljev D (2019) Is Iodine Oxidation with Hydrogen Peroxide Coupled with Nucleation Processes?, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.9b02563, 123:27, (16671-16680), Online publication date: 11-Jul-2019. Occhicone A, Sinibaldi G, Danz N, Casciola C and Michelotti F (2019) Cavitation bubble wall pressure measurement by an electromagnetic surface wave enhanced pump-probe configuration, Applied Physics Letters, 10.1063/1.5089206, 114:13, (134101), Online publication date: 1-Apr-2019. Sinibaldi G, Occhicone A, Alves Pereira F, Caprini D, Marino L, Michelotti F and Casciola C (2019) Laser induced cavitation: Plasma generation and breakdown shockwave, Physics of Fluids, 10.1063/1.5119794, 31:10, (103302), Online publication date: 1-Oct-2019. Pflieger R, Nikitenko S, Cairós C and Mettin R (2019) Bubble Dynamics Characterization of Cavitation Bubbles and Sonoluminescence, 10.1007/978-3-030-11717-7_1, (1-38), . Zhang M, Chang Q, Ma X, Wang G and Huang B (2019) Physical investigation of the counterjet dynamics during the bubble rebound, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2019.104706, 58, (104706), Online publication date: 1-Nov-2019. Wei Z, Hsiao Y, Chen X, La Plante E, Mehdipour I, Simonetti D, Neithalath N, Pilon L, Bauchy M, Israelachvili J and Sant G (2018) Isothermal Stimulation of Mineral Dissolution Processes by Acoustic Perturbation, The Journal of Physical Chemistry C, 10.1021/acs.jpcc.8b08343, 122:50, (28665-28673), Online publication date: 20-Dec-2018. Rosselló J, Lauterborn W, Koch M, Wilken T, Kurz T and Mettin R (2018) Acoustically induced bubble jets, Physics of Fluids, 10.1063/1.5063011, 30:12, (122004), Online publication date: 1-Dec-2018. Peruzzi G, Sinibaldi G, Silvani G, Ruocco G and Casciola C (2018) Perspectives on cavitation enhanced endothelial layer permeability, Colloids and Surfaces B: Biointerfaces, 10.1016/j.colsurfb.2018.02.027, 168, (83-93), Online publication date: 1-Aug-2018. Veysset D, Gutiérrez-Hernández U, Dresselhaus-Cooper L, De Colle F, Kooi S, Nelson K, Quinto-Su P and Pezeril T (2018) Single-bubble and multibubble cavitation in water triggered by laser-driven focusing shock waves, Physical Review E, 10.1103/PhysRevE.97.053112, 97:5 Haqshenas S, Ford I and Saffari N (2018) Modelling the effect of acoustic waves on the thermodynamics and kinetics of phase transformation in a solution: Including mass transportation, The Journal of Chemical Physics, 10.1063/1.5003021, 148:2, (024102), Online publication date: 14-Jan-2018. Xiang G and Wang B (2018) Numerical investigation on the interaction of planar shock wave with an initial ellipsoidal bubble in liquid medium, AIP Advances, 10.1063/1.5047570, 8:7, (075128), Online publication date: 1-Jul-2018. Sonde E, Chaise T, Boisson N and Nelias D (2018) Modeling of cavitation peening: Jet, bubble growth and collapse, micro-jet and residual stresses, Journal of Materials Processing Technology, 10.1016/j.jmatprotec.2018.07.023, 262, (479-491), Online publication date: 1-Dec-2018. Fu L, Wang S, Xin J, Wang S, Yao C, Zhang Z and Wang J (2018) Experimental investigation on multiple breakdown in water induced by focused nanosecond laser, Optics Express, 10.1364/OE.26.028560, 26:22, (28560), Online publication date: 29-Oct-2018. Lauterborn W, Lechner C, Koch M and Mettin R (2018) Bubble models and real bubbles: Rayleigh and energy-deposit cases in a Tait-compressible liquid, IMA Journal of Applied Mathematics, 10.1093/imamat/hxy015, 83:4, (556-589), Online publication date: 25-Jul-2018. Raymond Ooi C and Sanny A (2017) Multispectral sparkling of microbubbles with a focused femtosecond laser, Journal of the Optical Society of America B, 10.1364/JOSAB.34.002072, 34:10, (2072), Online publication date: 1-Oct-2017. Postema M, Abraham H, Krejcar O and Assefa D (2017) Size determination of microbubbles in optical microscopy: a best-case scenario, Optics Express, 10.1364/OE.25.033588, 25:26, (33588), Online publication date: 25-Dec-2017. Loske A (2017) Shock Wave Interaction with Matter Medical and Biomedical Applications of Shock Waves, 10.1007/978-3-319-47570-7_4, (43-82), . Supponen O, Obreschkow D, Kobel P, Tinguely M, Dorsaz N and Farhat M (2017) Shock waves from nonspherical cavitation bubbles, Physical Review Fluids, 10.1103/PhysRevFluids.2.093601, 2:9 Plocek J (2017) A method for indication and improving the position stability of the bubble in single-bubble cavitation experiments, Review of Scientific Instruments, 10.1063/1.5006100, 88:10, (104901), Online publication date: 1-Oct-2017. (2017) Cavitation Erosion Friction, Lubrication, and Wear Technology, 10.31399/asm.hb.v18.a0006384, (290-301) Sukovich J, Anderson P, Sampathkumar A, Gaitan D, Pishchalnikov Y and Holt R (2017) Outcomes of the collapse of a large bubble in water at high ambient pressures, Physical Review E, 10.1103/PhysRevE.95.043101, 95:4 Miao B and An Y (2017) Localization in an Acoustic Cavitation Cloud, Chinese Physics Letters, 10.1088/0256-307X/34/3/034302, 34:3, (034302), Online publication date: 1-Mar-2017. Reuter F, Lauterborn S, Mettin R and Lauterborn W (2017) Membrane cleaning with ultrasonically driven bubbles, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2016.12.012, 37, (542-560), Online publication date: 1-Jul-2017. Qiang H, Han B, Chen J, Yang C, Li T, Pan Y, Shen Z, Lu J and Ni X (2017) Dynamics study of a laser-induced bubble on a finite metallic surface in water, AIP Advances, 10.1063/1.4994745, 7:7, (075109), Online publication date: 1-Jul-2017. Chiu R, Mora-González M, Villafaña-Rauda E, Casillas-Rodríguez F, Castañeda-Contreras J, Marañón-Ruíz V and Castaño V (2017) Optical effects of thermocavitation in natural plant extracts, Optik, 10.1016/j.ijleo.2017.01.027, 134, (216-218), Online publication date: 1-Apr-2017. Lee J (2018) Importance of Sonication and Solution Conditions on the Acoustic Cavitation Activity Handbook of Ultrasonics and Sonochemistry, 10.1007/978-981-287-470-2_10-2, (1-39), . Choi B, Kollias N, Zeng H, Kang H, Wong B, Ilgner J, Tearney G, Gregory K, Marcu L, Skala M, Campagnola P, Mandelis A, Morris M, Zhang J, Xuan J, Yu H and Devincentis D (2016) Study of cavitation bubble dynamics during Ho:YAG laser lithotripsy by high-speed camera SPIE BiOS, 10.1117/12.2207487, , (96891E), Online publication date: 29-Feb-2016. Cui P, Wang Q, Wang S and Zhang A (2016) Experimental study on interaction and coalescence of synchronized multiple bubbles, Physics of Fluids, 10.1063/1.4939007, 28:1, (012103), Online publication date: 1-Jan-2016. Haqshenas S, Ford I and Saffari N (2016) Modelling the effect of acoustic waves on nucleation, The Journal of Chemical Physics, 10.1063/1.4955202, 145:2, (024315), Online publication date: 14-Jul-2016. Lee J (2016) Importance of Sonication and Solution Conditions on the Acoustic Cavitation Activity Handbook of Ultrasonics and Sonochemistry, 10.1007/978-981-287-278-4_10, (137-175), . Narayanan B, Deshmukh S, Shrestha L, Ariga K, Pol V and Sankaranarayanan S (2016) Cavitation and radicals drive the sonochemical synthesis of functional polymer spheres, Applied Physics Letters, 10.1063/1.4959885, 109:4, (041901), Online publication date: 25-Jul-2016. Asgharzadehahmadi S, Abdul Raman A, Parthasarathy R and Sajjadi B (2016) Sonochemical reactors: Review on features, advantages and limitations, Renewable and Sustainable Energy Reviews, 10.1016/j.rser.2016.05.030, 63, (302-314), Online publication date: 1-Sep-2016. Inada S, Shinagawa K, Illias S, Sumiya H and Jalaludin H (2016) Micro-bubble emission boiling with the cavitation bubble blow pit, Scientific Reports, 10.1038/srep33454, 6:1, Online publication date: 1-Dec-2016. Lee J (2015) Importance of Sonochemistry and Solution Conditions on the Acoustic Cavitation Activity Handbook of Ultrasonics and Sonochemistry, 10.1007/978-981-287-470-2_10-1, (1-39), . Eddingsaas N (2016) Mechanoluminescence Induced by Acoustic Cavitation Triboluminescence, 10.1007/978-3-319-38842-7_8, (237-271), . Supponen O, Obreschkow D, Tinguely M, Kobel P, Dorsaz N and Farhat M (2016) Scaling laws for jets of single cavitation bubbles, Journal of Fluid Mechanics, 10.1017/jfm.2016.463, 802, (263-293), Online publication date: 10-Sep-2016. Bouakaz A, Zeghimi A and Doinikov A (2016) Sonoporation: Concept and Mechanisms Therapeutic Ultrasound, 10.1007/978-3-319-22536-4_10, (175-189), . Ashokkumar M (2016) Introduction Ultrasonic Synthesis of Functional Materials, 10.1007/978-3-319-28974-8_1, (1-15), . Merouani S, Hamdaoui O, Rezgui Y and Guemini M (2016) Computational engineering study of hydrogen production via ultrasonic cavitation in water, International Journal of Hydrogen Energy, 10.1016/j.ijhydene.2015.11.058, 41:2, (832-844), Online publication date: 1-Jan-2016. Potemkin F and Mareev E (2014) Dynamics of multiple bubbles, excited by a femtosecond filament in water, Laser Physics Letters, 10.1088/1612-2011/12/1/015405, 12:1, (015405), Online publication date: 1-Jan-2015. Han B, Köhler K, Jungnickel K, Mettin R, Lauterborn W and Vogel A (2015) Dynamics of laser-induced bubble pairs, Journal of Fluid Mechanics, 10.1017/jfm.2015.183, 771, (706-742), Online publication date: 25-May-2015. Borisenok V (2015) Sonoluminescence: Experiments and models (Review), Acoustical Physics, 10.1134/S1063771015030057, 61:3, (308-332), Online publication date: 1-May-2015. Huang Y, Zhang L, Chen J, Zhu X, Liu Z and Yan K (2015) Experimental observation of the luminescence flash at the collapse phase of a bubble produced by pulsed discharge in water, Applied Physics Letters, 10.1063/1.4935206, 107:18, (184104), Online publication date: 2-Nov-2015. Lebon G, Pericleous K, Tzanakis I and Eskin D (2015) Dynamics of two interacting hydrogen bubbles in liquid aluminum under the influence of a strong acoustic field, Physical Review E, 10.1103/PhysRevE.92.043004, 92:4 Devia-Cruz L, Camacho-López S, Cortés V, Ramos-Muñiz V, Pérez-Gutiérrez F and Aguilar G (2015) Reconstruction of laser-induced cavitation bubble dynamics based on a Fresnel propagation approach, Applied Optics, 10.1364/AO.54.010432, 54:35, (10432), Online publication date: 10-Dec-2015. Merouani S, Ferkous H, Hamdaoui O, Rezgui Y and Guemini M (2015) A method for predicting the number of active bubbles in sonochemical reactors, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2014.07.015, 22, (51-58), Online publication date: 1-Jan-2015. Belova-Magri V, Brotchie A, Cairós C, Mettin R and Möhwald H (2015) Micropatterning for the Control of Surface Cavitation: Visualization through High-Speed Imaging, ACS Applied Materials & Interfaces, 10.1021/am508062h, 7:7, (4100-4108), Online publication date: 25-Feb-2015. Liu S, Zhuang S, Petelin M, Xiang L, Yu X, Xin J and Chen J (2015) Study of the laser induced acoustic under water source aim at imaging and detecting Selected Proceedings of the Photoelectronic Technology Committee Conferences held June-July 2015, 10.1117/12.2209318, , (97950K), Online publication date: 5-Nov-2015. Zong Y, Xu S, Matula T and Wan M (2015) Cavitation-Enhanced Mechanical Effects and Applications Cavitation in Biomedicine, 10.1007/978-94-017-7255-6_5, (207-263), . Luo J, Fang Z, Smith R and Qi X (2015) Fundamentals of Acoustic Cavitation in Sonochemistry Production of Biofuels and Chemicals with Ultrasound, 10.1007/978-94-017-9624-8_1, (3-33), . Liu C, Song H, Zhang C, Liu Y, Zhang C, Nan X and Cao G (2015) Coherent Mn3O4-carbon nanocomposites with enhanced energy-storage capacitance, Nano Research, 10.1007/s12274-015-0837-4, 8:10, (3372-3383), Online publication date: 1-Oct-2015. Lauterborn W and Mettin R (2015) Acoustic cavitation Power Ultrasonics, 10.1016/B978-1-78242-028-6.00003-X, (37-78), . Ye X, Zhang A and Zeng D (2015) Motion characteristics of cavitation bubble near the rigid wall with the driving of acoustic wave, China Ocean Engineering, 10.1007/s13344-015-0002-6, 29:1, (17-32), Online publication date: 1-Mar-2015. Hamaguchi F and Ando K (2015) Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation, Physics of Fluids, 10.1063/1.4935875, 27:11, (113103), Online publication date: 1-Nov-2015. Keswani M, Balachandran R and Deymier P (2015) Megasonic Cleaning for Particle Removal Particle Adhesion and Removal, 10.1002/9781118831571.ch6, (243-279) Goh B, Ohl S, Klaseboer E and Khoo B (2014) Jet orientation of a collapsing bubble near a solid wall with an attached air bubble, Physics of Fluids, 10.1063/1.4870244, 26:4, (042103), Online publication date: 1-Apr-2014. Macedo R, Verhaagen B, Fernandez Rivas D, Gardeniers J, van der Sluis L, Wesselink P and Versluis M (2014) Sonochemical and high-speed optical characterization of cavitation generated by an ultrasonically oscillating dental file in root canal models, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2013.03.001, 21:1, (324-335), Online publication date: 1-Jan-2014. Zhang L, Belova V, Wang H, Dong W and Möhwald H (2014) Controlled Cavitation at Nano/Microparticle Surfaces, Chemistry of Materials, 10.1021/cm404194n, 26:7, (2244-2248), Online publication date: 8-Apr-2014. Kim T and Kim H (2014) Disruptive bubble behaviour leading to microstructure damage in an ultrasonic field, Journal of Fluid Mechanics, 10.1017/jfm.2014.267, 750, (355-371), Online publication date: 10-Jul-2014. Xi X, Cegla F, Mettin R, Holsteyns F and Lippert A (2014) Study of non-spherical bubble oscillations near a surface in a weak acoustic standing wave field, The Journal of the Acoustical Society of America, 10.1121/1.4864461, 135:4, (1731-1741), Online publication date: 1-Apr-2014. Padilla-Martinez J, Berrospe-Rodriguez C, Aguilar G, Ramirez-San-Juan J and Ramos-Garcia R (2014) Optic cavitation with CW lasers: A review, Physics of Fluids, 10.1063/1.4904718, 26:12, (122007), Online publication date: 1-Dec-2014. Tian W, Chen R, Zuo J, Qiu S, Su G, Ishiwatari Y and Oka Y (2013) Numerical Simulation on Collapse of Vapor Bubble Using Particle Method, Heat Transfer Engineering, 10.1080/01457632.2013.838078, 35:6-8, (753-763), Online publication date: 24-May-2014. Suslick K (2014) Mechanochemistry and sonochemistry: concluding remarks, Faraday Discuss., 10.1039/C4FD00148F, 170, (411-422) Ramsey M and Pitz R (2013) Energetic Cavitation Collapse Generates 3.2 Mbar Plasma with a 1.4 J Driver, Physical Review Letters, 10.1103/PhysRevLett.110.154301, 110:15 Sharipov G, Gareev B and Abdrakhmanov A (2013) Few-bubble luminescence in the acoustic field of a spherical resonator in aqueous solutions of sodium and terbium compounds, Acoustical Physics, 10.1134/S106377101305014X, 59:5, (521-527), Online publication date: 1-Sep-2013. Yang Y, Wang Q and Keat T (2013) Dynamic features of a laser-induced cavitation bubble near a solid boundary, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2013.01.010, 20:4, (1098-1103), Online publication date: 1-Jul-2013. Keswani M, Raghavan S and Deymier P (2013) A novel way of detecting transient cavitation near a solid surface during megasonic cleaning using electrochemical impedance spectroscopy, Microelectronic Engineering, 10.1016/j.mee.2013.02.097, 108, (11-15), Online publication date: 1-Aug-2013. Xu H, Zeiger B and Suslick K (2013) Sonochemical synthesis of nanomaterials, Chem. Soc. Rev., 10.1039/C2CS35282F, 42:7, (2555-2567) Obreschkow D, Tinguely M, Dorsaz N, Kobel P, de Bosset A and Farhat M (2013) The quest for the most spherical bubble: experimental setup and data overview, Experiments in Fluids, 10.1007/s00348-013-1503-9, 54:4, Online publication date: 1-Apr-2013. Rooze J, Rebrov E, Schouten J and Keurentjes J (2013) Dissolved gas and ultrasonic cavitation – A review, Ultrasonics Sonochemistry, 10.1016/j.ultsonch.2012.04.013, 20:1, (1-11), Online publication date: 1-Jan-2013. Tsigklifis K and Pelekasis N (2013) Simulations of insonated contrast agents: Saturation and transient break-up, Physics of Fluids, 10.1063/1.4794289, 25:3, (032109), Online publication date: 1-Mar-2013. Versluis M (2013) High-speed imaging in fluids, Experiments in Fluids, 10.1007/s00348-013-1458-x, 54:2, Online publication date: 1-Feb-2013. An Y (2012) Nonlinear bubble dynamics of cavitation, Physical Review E, 10.1103/PhysRevE.85.016305, 85:1 Fernandez Rivas D, Verhaagen B, Seddon J, Zijlstra A, Jiang L, van der Sluis L, Versluis M, Lohse D and Gardeniers H (2012) Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles, Biomicrofluidics, 10.1063/1.4747166, 6:3, (034114), Online publication date: 1-Sep-2012. Hołyst R, Litniewski M and Garstecki P (2012) Collapse of a nanoscopic void triggered by a spherically symmetric traveling sound wave, Physical Review E, 10.1103/PhysRevE.85.056303, 85:5 Rechiman L, Bonetto F and Rosselló J (2012) Effect of the Rayleigh-Taylor instability on maximum reachable temperatures in laser-induced bubbles, Physical Review E, 10.1103/PhysRevE.86.027301, 86:2 Tinguely M, Obreschkow D, Kobel P, Dorsaz N, de Bosset A and Farhat M (2012) Energy partition at the collapse of spherical cavitation bubbles, Physical Review E, 10.1103/PhysRevE.86.046315, 86:4 Farhat M, Chakravarty A and Field J (2010) Luminescence from hydrodynamic cavitation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467:2126, (591-606), Online publication date: 8-Feb-2011. Lee H, Gojani A, Han T and Yoh J (2011) Dynamics of laser-induced bubble collapse visualized by time-resolved optical shadowgraph, Journal of Visualization, 10.1007/s12650-011-0094-x, 14:4, (331-337), Online publication date: 1-Dec-2011. Anderson P, Sampathkumar A, Murray T, Gaitan D and Glynn Holt R (2011) Optical nucleation of bubble clouds in a high pressure spherical resonator, The Journal of the Acoustical Society of America, 10.1121/1.3626161, 130:5, (3389-3395), Online publication date: 1-Nov-2011. JAMALUDDIN A, BALL G, TURANGAN C and LEIGHTON T (2011) The collapse of single bubbles and approximation of the far-field acoustic emissions for cavitation induced by shock wave lithotripsy, Journal of Fluid Mechanics, 10.1017/jfm.2011.85, 677, (305-341), Online publication date: 25-Jun-2011. Mondal P and Chatterjee B (2011) Characteristics of acoustic emissions during nucleation of superheated droplets, Physics Letters A, 10.1016/j.physleta.2010.09.075, 375:3, (237-244), Online publication date: 1-Jan-2011. Yang S, Jaw S and Yeh K (2011) Cinematographic Analysis of Counter Jet Formation in a Single Cavitation Bubble Collapse Flow, Journal of Mechanics, 10.1017/jmech.2011.29, 27:2, (253-266), Online publication date: 1-Jun-2011. Holzfuss J (2010) Acoustic energy radiated by nonlinear spherical oscillations of strongly driven bubbles, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 466:2118, (1829-1847), Online publication date: 8-Jun-2010. Lauterborn W and Kurz T (2010) Physics of bubble oscillations, Reports on Progress in Physics, 10.1088/0034-4885/73/10/106501, 73:10, (106501), Online publication date: 1-Oct-2010. Inaba Y, Takimoto K, Yosizawa S and Umemura S (2010) Simultaneous coagulation of large volume by creating multiple cavitation clouds in high intensity focused ultrasound treatment 2010 IEEE Ultrasonics Symposium (IUS), 10.1109/ULTSYM.2010.5935614, 978-1-4577-0382-9, (2278-2281) Sankin G, Yuan F and Zhong P (2010) Pulsating Tandem Microbubble for Localized and Directional Single-Cell Membrane Poration, Physical Review Letters, 10.1103/PhysRevLett.105.078101, 105:7 SHAW S and SPELT P (2010) Shock emission from collapsing gas bubbles, Journal of Fluid Mechanics, 10.1017/S0022112009993338, 646, (363-373)" @default.
- W2140199078 created "2016-06-24" @default.
- W2140199078 creator A5030594402 @default.
- W2140199078 creator A5031800133 @default.
- W2140199078 creator A5057300692 @default.
- W2140199078 creator A5061667384 @default.
- W2140199078 creator A5076853122 @default.
- W2140199078 date "1999-02-15" @default.
- W2140199078 modified "2023-10-17" @default.
- W2140199078 title "Bubble dynamics, shock waves and sonoluminescence" @default.
- W2140199078 cites W1969731057 @default.
- W2140199078 cites W1974530388 @default.
- W2140199078 cites W1987761888 @default.
- W2140199078 cites W2007229973 @default.
- W2140199078 cites W2024310946 @default.
- W2140199078 cites W2027425011 @default.
- W2140199078 cites W2027987007 @default.
- W2140199078 cites W2037270198 @default.
- W2140199078 cites W2049807528 @default.
- W2140199078 cites W2051822076 @default.
- W2140199078 cites W2060554227 @default.
- W2140199078 cites W2063376045 @default.
- W2140199078 cites W2069200022 @default.
- W2140199078 cites W2073832802 @default.
- W2140199078 cites W2083573762 @default.
- W2140199078 cites W2089163456 @default.
- W2140199078 cites W2093629587 @default.
- W2140199078 cites W2095534151 @default.
- W2140199078 cites W2102218146 @default.
- W2140199078 cites W2135412860 @default.
- W2140199078 cites W2138019739 @default.
- W2140199078 cites W2163179803 @default.
- W2140199078 cites W2164172498 @default.
- W2140199078 cites W2317138703 @default.
- W2140199078 cites W2496397042 @default.
- W2140199078 cites W4240526401 @default.
- W2140199078 cites W4242233909 @default.
- W2140199078 cites W4254442929 @default.
- W2140199078 cites W4361968850 @default.
- W2140199078 cites W3147328630 @default.
- W2140199078 doi "https://doi.org/10.1098/rsta.1999.0327" @default.
- W2140199078 hasPublicationYear "1999" @default.
- W2140199078 type Work @default.
- W2140199078 sameAs 2140199078 @default.
- W2140199078 citedByCount "223" @default.
- W2140199078 countsByYear W21401990782012 @default.
- W2140199078 countsByYear W21401990782013 @default.
- W2140199078 countsByYear W21401990782014 @default.
- W2140199078 countsByYear W21401990782015 @default.
- W2140199078 countsByYear W21401990782016 @default.
- W2140199078 countsByYear W21401990782017 @default.
- W2140199078 countsByYear W21401990782018 @default.
- W2140199078 countsByYear W21401990782019 @default.
- W2140199078 countsByYear W21401990782020 @default.
- W2140199078 countsByYear W21401990782021 @default.
- W2140199078 countsByYear W21401990782022 @default.
- W2140199078 countsByYear W21401990782023 @default.
- W2140199078 crossrefType "journal-article" @default.
- W2140199078 hasAuthorship W2140199078A5030594402 @default.
- W2140199078 hasAuthorship W2140199078A5031800133 @default.
- W2140199078 hasAuthorship W2140199078A5057300692 @default.
- W2140199078 hasAuthorship W2140199078A5061667384 @default.
- W2140199078 hasAuthorship W2140199078A5076853122 @default.
- W2140199078 hasConcept C121332964 @default.
- W2140199078 hasConcept C121864883 @default.
- W2140199078 hasConcept C126322002 @default.
- W2140199078 hasConcept C145912823 @default.
- W2140199078 hasConcept C157915830 @default.
- W2140199078 hasConcept C24890656 @default.
- W2140199078 hasConcept C2781300812 @default.
- W2140199078 hasConcept C57879066 @default.
- W2140199078 hasConcept C70477161 @default.
- W2140199078 hasConcept C716847 @default.
- W2140199078 hasConcept C71924100 @default.
- W2140199078 hasConcept C74650414 @default.
- W2140199078 hasConceptScore W2140199078C121332964 @default.
- W2140199078 hasConceptScore W2140199078C121864883 @default.
- W2140199078 hasConceptScore W2140199078C126322002 @default.
- W2140199078 hasConceptScore W2140199078C145912823 @default.
- W2140199078 hasConceptScore W2140199078C157915830 @default.
- W2140199078 hasConceptScore W2140199078C24890656 @default.
- W2140199078 hasConceptScore W2140199078C2781300812 @default.
- W2140199078 hasConceptScore W2140199078C57879066 @default.
- W2140199078 hasConceptScore W2140199078C70477161 @default.
- W2140199078 hasConceptScore W2140199078C716847 @default.
- W2140199078 hasConceptScore W2140199078C71924100 @default.
- W2140199078 hasConceptScore W2140199078C74650414 @default.
- W2140199078 hasIssue "1751" @default.
- W2140199078 hasLocation W21401990781 @default.
- W2140199078 hasOpenAccess W2140199078 @default.
- W2140199078 hasPrimaryLocation W21401990781 @default.
- W2140199078 hasRelatedWork W1631747558 @default.
- W2140199078 hasRelatedWork W1986209189 @default.
- W2140199078 hasRelatedWork W1992128533 @default.
- W2140199078 hasRelatedWork W1998121479 @default.
- W2140199078 hasRelatedWork W2008554516 @default.
- W2140199078 hasRelatedWork W2036054861 @default.
- W2140199078 hasRelatedWork W2048826105 @default.