Matches in SemOpenAlex for { <https://semopenalex.org/work/W2140398892> ?p ?o ?g. }
- W2140398892 endingPage "2509" @default.
- W2140398892 startingPage "2497" @default.
- W2140398892 abstract "Face recognition from Single Sample per Person (SSPP) is extremely challenging because only one sample is available for each person. While many discriminant analysis methods, such as Fisherfaces and its numerous variants, have achieved great success in face recognition, these methods cannot work in this scenario, because more than one sample per person are needed to calculate the within-class scatter matrix. To address this problem, we propose Adaptive Discriminant Analysis (ADA) in which the within-class scatter matrix of each enrolled subject is inferred using his/her single sample, by leveraging a generic set with multiple samples per person. Our method is motivated from the assumption that subjects who look alike to each other generally share similar within-class variations. In ADA, a limited number of neighbors for each single sample are first determined from the generic set by using kNN regression or Lasso regression. Then, the within-class scatter matrix of this single sample is inferred as the weighted average of the within-class scatter matrices of these neighbors based on the arithmetic mean or Riemannian mean. Finally, the optimal ADA projection directions can be computed analytically by using the inferred within-class scatter matrices and the actual between-class scatter matrix. The proposed method is evaluated on three databases including FERET database, FRGC database and a large real-world passport-like face database. The extensive results demonstrate the effectiveness of our ADA when compared with the existing solutions to the SSPP problem." @default.
- W2140398892 created "2016-06-24" @default.
- W2140398892 creator A5047682975 @default.
- W2140398892 creator A5050297728 @default.
- W2140398892 creator A5075435632 @default.
- W2140398892 creator A5082181536 @default.
- W2140398892 creator A5083420537 @default.
- W2140398892 date "2013-09-01" @default.
- W2140398892 modified "2023-10-14" @default.
- W2140398892 title "Adaptive discriminant learning for face recognition" @default.
- W2140398892 cites W1545641654 @default.
- W2140398892 cites W1567019178 @default.
- W2140398892 cites W1978163866 @default.
- W2140398892 cites W1982850300 @default.
- W2140398892 cites W1986964250 @default.
- W2140398892 cites W1989702938 @default.
- W2140398892 cites W1997011019 @default.
- W2140398892 cites W1997659823 @default.
- W2140398892 cites W2001947174 @default.
- W2140398892 cites W2036030443 @default.
- W2140398892 cites W2038165640 @default.
- W2140398892 cites W2044270390 @default.
- W2140398892 cites W2046649434 @default.
- W2140398892 cites W2053186076 @default.
- W2140398892 cites W2061255502 @default.
- W2140398892 cites W2062019416 @default.
- W2140398892 cites W2067624260 @default.
- W2140398892 cites W2070343473 @default.
- W2140398892 cites W2073644493 @default.
- W2140398892 cites W2083965952 @default.
- W2140398892 cites W2092131162 @default.
- W2140398892 cites W2095189186 @default.
- W2140398892 cites W2096027770 @default.
- W2140398892 cites W2102544846 @default.
- W2140398892 cites W2106418974 @default.
- W2140398892 cites W2107369107 @default.
- W2140398892 cites W2108767394 @default.
- W2140398892 cites W2109591032 @default.
- W2140398892 cites W2110410904 @default.
- W2140398892 cites W2111574755 @default.
- W2140398892 cites W2112223816 @default.
- W2140398892 cites W2113341759 @default.
- W2140398892 cites W2116022929 @default.
- W2140398892 cites W2117820831 @default.
- W2140398892 cites W2121647436 @default.
- W2140398892 cites W2130293274 @default.
- W2140398892 cites W2137611320 @default.
- W2140398892 cites W2138451337 @default.
- W2140398892 cites W2143343993 @default.
- W2140398892 cites W2167025280 @default.
- W2140398892 cites W2169126105 @default.
- W2140398892 cites W2169635990 @default.
- W2140398892 doi "https://doi.org/10.1016/j.patcog.2013.01.037" @default.
- W2140398892 hasPublicationYear "2013" @default.
- W2140398892 type Work @default.
- W2140398892 sameAs 2140398892 @default.
- W2140398892 citedByCount "65" @default.
- W2140398892 countsByYear W21403988922013 @default.
- W2140398892 countsByYear W21403988922014 @default.
- W2140398892 countsByYear W21403988922015 @default.
- W2140398892 countsByYear W21403988922016 @default.
- W2140398892 countsByYear W21403988922017 @default.
- W2140398892 countsByYear W21403988922018 @default.
- W2140398892 countsByYear W21403988922019 @default.
- W2140398892 countsByYear W21403988922020 @default.
- W2140398892 countsByYear W21403988922021 @default.
- W2140398892 countsByYear W21403988922022 @default.
- W2140398892 crossrefType "journal-article" @default.
- W2140398892 hasAuthorship W2140398892A5047682975 @default.
- W2140398892 hasAuthorship W2140398892A5050297728 @default.
- W2140398892 hasAuthorship W2140398892A5075435632 @default.
- W2140398892 hasAuthorship W2140398892A5082181536 @default.
- W2140398892 hasAuthorship W2140398892A5083420537 @default.
- W2140398892 hasConcept C105795698 @default.
- W2140398892 hasConcept C106487976 @default.
- W2140398892 hasConcept C11413529 @default.
- W2140398892 hasConcept C119857082 @default.
- W2140398892 hasConcept C144024400 @default.
- W2140398892 hasConcept C153180895 @default.
- W2140398892 hasConcept C154945302 @default.
- W2140398892 hasConcept C159985019 @default.
- W2140398892 hasConcept C161584116 @default.
- W2140398892 hasConcept C176917957 @default.
- W2140398892 hasConcept C177264268 @default.
- W2140398892 hasConcept C177384507 @default.
- W2140398892 hasConcept C185592680 @default.
- W2140398892 hasConcept C192562407 @default.
- W2140398892 hasConcept C198531522 @default.
- W2140398892 hasConcept C199360897 @default.
- W2140398892 hasConcept C2777212361 @default.
- W2140398892 hasConcept C2779304628 @default.
- W2140398892 hasConcept C31510193 @default.
- W2140398892 hasConcept C33923547 @default.
- W2140398892 hasConcept C36289849 @default.
- W2140398892 hasConcept C41008148 @default.
- W2140398892 hasConcept C43617362 @default.
- W2140398892 hasConcept C57493831 @default.
- W2140398892 hasConcept C58489278 @default.