Matches in SemOpenAlex for { <https://semopenalex.org/work/W2140463808> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2140463808 endingPage "2095" @default.
- W2140463808 startingPage "2085" @default.
- W2140463808 abstract "<para xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> Maximum-likelihood estimation subject to nonlinear measurement functions is generally performed through optimization algorithms when accuracy is required and enough processing time is available, or with recursive filters for real-time applications but at the expense of a loss of accuracy. In this paper, we propose a new estimator for parameter estimation based on a polynomial approximation of the measurement signal. The raw dataset is replaced by <formula formulatype=inline> <tex Notation=TeX>$n+ 1$</tex></formula> independent polynomial samples (PS) for a smoothing polynomial of order <formula formulatype=inline><tex Notation=TeX>$n$</tex></formula>, resulting in a reduction of the computational burden. It is shown that the PSs must be sampled at some deterministic instants and an approximate formula for the variance of the PSs is also provided. Moreover, it is also proved and illustrated on three examples that the new estimator which processes the PSs is equivalent to the standard maximum-likelihood estimator based on the raw dataset, provided that the measurement function and its first derivatives can be approximated with a polynomial of order <formula formulatype=inline> <tex Notation=TeX>$n$</tex></formula>. Since this algorithm proceeds from a compact representation of a measurement signal, it can find applications in real-time processing, power saving processing, or estimation based on compressed data, even if this latter field has not been investigated from a theoretical perspective. Its structure which is made up of several separate tasks is also adapted to distributed processing problems. Because the performance of the method is related to the polynomial approximation quality, the algorithm is well suited for smooth measurement functions like in trajectory estimation applications. </para>" @default.
- W2140463808 created "2016-06-24" @default.
- W2140463808 creator A5021001566 @default.
- W2140463808 creator A5061314613 @default.
- W2140463808 date "2009-06-01" @default.
- W2140463808 modified "2023-10-18" @default.
- W2140463808 title "A Polynomial Approximation Algorithm for Real-Time Maximum-Likelihood Estimation" @default.
- W2140463808 cites W111413457 @default.
- W2140463808 cites W1483307070 @default.
- W2140463808 cites W1538755060 @default.
- W2140463808 cites W1564565418 @default.
- W2140463808 cites W1602659231 @default.
- W2140463808 cites W1646998587 @default.
- W2140463808 cites W1749494163 @default.
- W2140463808 cites W185617647 @default.
- W2140463808 cites W1972780285 @default.
- W2140463808 cites W1980657668 @default.
- W2140463808 cites W2020328455 @default.
- W2140463808 cites W2020934227 @default.
- W2140463808 cites W2021376507 @default.
- W2140463808 cites W2030017120 @default.
- W2140463808 cites W2049633694 @default.
- W2140463808 cites W2065754355 @default.
- W2140463808 cites W2067764882 @default.
- W2140463808 cites W2077916855 @default.
- W2140463808 cites W2086273455 @default.
- W2140463808 cites W2103982455 @default.
- W2140463808 cites W2120209267 @default.
- W2140463808 cites W2123037941 @default.
- W2140463808 cites W2126423185 @default.
- W2140463808 cites W2132207931 @default.
- W2140463808 cites W2135401627 @default.
- W2140463808 cites W2136854021 @default.
- W2140463808 cites W2138492196 @default.
- W2140463808 cites W2143059729 @default.
- W2140463808 cites W2148598549 @default.
- W2140463808 cites W2151595780 @default.
- W2140463808 cites W2154673154 @default.
- W2140463808 cites W2162854066 @default.
- W2140463808 cites W2204074298 @default.
- W2140463808 cites W2331293865 @default.
- W2140463808 cites W3038165843 @default.
- W2140463808 cites W10518661 @default.
- W2140463808 doi "https://doi.org/10.1109/tsp.2009.2016875" @default.
- W2140463808 hasPublicationYear "2009" @default.
- W2140463808 type Work @default.
- W2140463808 sameAs 2140463808 @default.
- W2140463808 citedByCount "4" @default.
- W2140463808 countsByYear W21404638082012 @default.
- W2140463808 countsByYear W21404638082013 @default.
- W2140463808 countsByYear W21404638082020 @default.
- W2140463808 crossrefType "journal-article" @default.
- W2140463808 hasAuthorship W2140463808A5021001566 @default.
- W2140463808 hasAuthorship W2140463808A5061314613 @default.
- W2140463808 hasConcept C105795698 @default.
- W2140463808 hasConcept C11413529 @default.
- W2140463808 hasConcept C126255220 @default.
- W2140463808 hasConcept C134306372 @default.
- W2140463808 hasConcept C148764684 @default.
- W2140463808 hasConcept C167928553 @default.
- W2140463808 hasConcept C185429906 @default.
- W2140463808 hasConcept C28826006 @default.
- W2140463808 hasConcept C33923547 @default.
- W2140463808 hasConcept C3770464 @default.
- W2140463808 hasConcept C90119067 @default.
- W2140463808 hasConceptScore W2140463808C105795698 @default.
- W2140463808 hasConceptScore W2140463808C11413529 @default.
- W2140463808 hasConceptScore W2140463808C126255220 @default.
- W2140463808 hasConceptScore W2140463808C134306372 @default.
- W2140463808 hasConceptScore W2140463808C148764684 @default.
- W2140463808 hasConceptScore W2140463808C167928553 @default.
- W2140463808 hasConceptScore W2140463808C185429906 @default.
- W2140463808 hasConceptScore W2140463808C28826006 @default.
- W2140463808 hasConceptScore W2140463808C33923547 @default.
- W2140463808 hasConceptScore W2140463808C3770464 @default.
- W2140463808 hasConceptScore W2140463808C90119067 @default.
- W2140463808 hasIssue "6" @default.
- W2140463808 hasLocation W21404638081 @default.
- W2140463808 hasOpenAccess W2140463808 @default.
- W2140463808 hasPrimaryLocation W21404638081 @default.
- W2140463808 hasRelatedWork W1987082996 @default.
- W2140463808 hasRelatedWork W1999189895 @default.
- W2140463808 hasRelatedWork W2059079232 @default.
- W2140463808 hasRelatedWork W2073755461 @default.
- W2140463808 hasRelatedWork W2119961354 @default.
- W2140463808 hasRelatedWork W2152704622 @default.
- W2140463808 hasRelatedWork W2373817551 @default.
- W2140463808 hasRelatedWork W2389100720 @default.
- W2140463808 hasRelatedWork W3123431136 @default.
- W2140463808 hasRelatedWork W3150274214 @default.
- W2140463808 hasVolume "57" @default.
- W2140463808 isParatext "false" @default.
- W2140463808 isRetracted "false" @default.
- W2140463808 magId "2140463808" @default.
- W2140463808 workType "article" @default.