Matches in SemOpenAlex for { <https://semopenalex.org/work/W2140505510> ?p ?o ?g. }
- W2140505510 endingPage "172" @default.
- W2140505510 startingPage "133" @default.
- W2140505510 abstract "Let q(x,t) satisfy an integrable nonlinear evolution PDE on the interval 0<x<L, and let the order of the highest x-derivative be n. For a problem to be at least linearly well-posed one must prescribe N boundary conditions at x=0 and n−N boundary conditions at x=L, where if n is even, N=n/2, and if n is odd, N is either (n−1)/2 or (n+1)/2, depending on the sign of ∂ n x q. For example, for the sine-Gordon (sG) equation one must prescribe one boundary condition at each end, while for the modified Korteweg-de Vries (mKdV) equations involving q t +q xxx and q t −q xxx one must prescribe one and two boundary conditions, respectively, at x=0. We will refer to these two mKdV equations as mKdV-I and mKdV-II, respectively. Here we analyze the Dirichlet problem for the sG equation, as well as typical boundary value problems for the mKdV-I and mKdV-II equations. We first show that the unknown boundary values at each end (for example, q x (0,t) and q x (L,t) in the case of the Dirichlet problem for the sG equation) can be expressed in terms of the given initial and boundary conditions through a system of four nonlinear ODEs. We then show that q(x,t) can be expressed in terms of the solution of a 2×2 matrix Riemann-Hilbert problem formulated in the complex k-plane. This problem has explicit (x,t) dependence in the form of an exponential; for example, for the case of the sG this exponential is exp {i(k−1/k)x+i(k+1/k)t}. Furthermore, the relevant jump matrices are explicitly given in terms of the spectral functions {a(k),b(k)}, {A(k),B(k)}, and , which in turn are defined in terms of the initial conditions, of the boundary values of q and of its x-derivatives at x=0, and of the boundary values of q and of its x-derivatives at x=L, respectively. This Riemann-Hilbert problem has a global solution." @default.
- W2140505510 created "2016-06-24" @default.
- W2140505510 creator A5004114262 @default.
- W2140505510 creator A5007372240 @default.
- W2140505510 creator A5018042944 @default.
- W2140505510 date "2006-01-26" @default.
- W2140505510 modified "2023-10-05" @default.
- W2140505510 title "Integrable Nonlinear Evolution Equations on a Finite Interval" @default.
- W2140505510 cites W1539173981 @default.
- W2140505510 cites W1596130750 @default.
- W2140505510 cites W1623822554 @default.
- W2140505510 cites W1968081421 @default.
- W2140505510 cites W1974457362 @default.
- W2140505510 cites W1986365342 @default.
- W2140505510 cites W1999080167 @default.
- W2140505510 cites W1999854986 @default.
- W2140505510 cites W2003912229 @default.
- W2140505510 cites W2014228145 @default.
- W2140505510 cites W2016739642 @default.
- W2140505510 cites W2022443517 @default.
- W2140505510 cites W2030669316 @default.
- W2140505510 cites W2044629177 @default.
- W2140505510 cites W2057235227 @default.
- W2140505510 cites W2062565740 @default.
- W2140505510 cites W2064039912 @default.
- W2140505510 cites W2067847334 @default.
- W2140505510 cites W2073808301 @default.
- W2140505510 cites W2083945692 @default.
- W2140505510 cites W2089996117 @default.
- W2140505510 cites W2092793589 @default.
- W2140505510 cites W2108256592 @default.
- W2140505510 cites W2111969856 @default.
- W2140505510 cites W2137766864 @default.
- W2140505510 cites W2159613209 @default.
- W2140505510 cites W2467569531 @default.
- W2140505510 cites W38714979 @default.
- W2140505510 cites W4240108178 @default.
- W2140505510 doi "https://doi.org/10.1007/s00220-005-1495-2" @default.
- W2140505510 hasPublicationYear "2006" @default.
- W2140505510 type Work @default.
- W2140505510 sameAs 2140505510 @default.
- W2140505510 citedByCount "56" @default.
- W2140505510 countsByYear W21405055102012 @default.
- W2140505510 countsByYear W21405055102013 @default.
- W2140505510 countsByYear W21405055102014 @default.
- W2140505510 countsByYear W21405055102015 @default.
- W2140505510 countsByYear W21405055102016 @default.
- W2140505510 countsByYear W21405055102017 @default.
- W2140505510 countsByYear W21405055102018 @default.
- W2140505510 countsByYear W21405055102019 @default.
- W2140505510 countsByYear W21405055102020 @default.
- W2140505510 countsByYear W21405055102021 @default.
- W2140505510 countsByYear W21405055102022 @default.
- W2140505510 crossrefType "journal-article" @default.
- W2140505510 hasAuthorship W2140505510A5004114262 @default.
- W2140505510 hasAuthorship W2140505510A5007372240 @default.
- W2140505510 hasAuthorship W2140505510A5018042944 @default.
- W2140505510 hasBestOaLocation W21405055102 @default.
- W2140505510 hasConcept C110167270 @default.
- W2140505510 hasConcept C121332964 @default.
- W2140505510 hasConcept C134306372 @default.
- W2140505510 hasConcept C146630112 @default.
- W2140505510 hasConcept C158622935 @default.
- W2140505510 hasConcept C182310444 @default.
- W2140505510 hasConcept C200741047 @default.
- W2140505510 hasConcept C202444582 @default.
- W2140505510 hasConcept C2779560616 @default.
- W2140505510 hasConcept C33923547 @default.
- W2140505510 hasConcept C37914503 @default.
- W2140505510 hasConcept C62520636 @default.
- W2140505510 hasConceptScore W2140505510C110167270 @default.
- W2140505510 hasConceptScore W2140505510C121332964 @default.
- W2140505510 hasConceptScore W2140505510C134306372 @default.
- W2140505510 hasConceptScore W2140505510C146630112 @default.
- W2140505510 hasConceptScore W2140505510C158622935 @default.
- W2140505510 hasConceptScore W2140505510C182310444 @default.
- W2140505510 hasConceptScore W2140505510C200741047 @default.
- W2140505510 hasConceptScore W2140505510C202444582 @default.
- W2140505510 hasConceptScore W2140505510C2779560616 @default.
- W2140505510 hasConceptScore W2140505510C33923547 @default.
- W2140505510 hasConceptScore W2140505510C37914503 @default.
- W2140505510 hasConceptScore W2140505510C62520636 @default.
- W2140505510 hasIssue "1" @default.
- W2140505510 hasLocation W21405055101 @default.
- W2140505510 hasLocation W21405055102 @default.
- W2140505510 hasOpenAccess W2140505510 @default.
- W2140505510 hasPrimaryLocation W21405055101 @default.
- W2140505510 hasRelatedWork W2010702650 @default.
- W2140505510 hasRelatedWork W2053813370 @default.
- W2140505510 hasRelatedWork W2068031792 @default.
- W2140505510 hasRelatedWork W2076624356 @default.
- W2140505510 hasRelatedWork W2334223026 @default.
- W2140505510 hasRelatedWork W2951311638 @default.
- W2140505510 hasRelatedWork W2964203639 @default.
- W2140505510 hasRelatedWork W3098531901 @default.
- W2140505510 hasRelatedWork W3099527708 @default.
- W2140505510 hasRelatedWork W4298826845 @default.
- W2140505510 hasVolume "263" @default.