Matches in SemOpenAlex for { <https://semopenalex.org/work/W2140511282> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2140511282 endingPage "369" @default.
- W2140511282 startingPage "358" @default.
- W2140511282 abstract "Regression trees have been known to be an effective data mining tool for semiconductor yield analysis. The regression tree is built by iteratively splitting dataset and selecting attributes into a hierarchical tree model. The sample size reduces sharply after few levels of data splitting causing unreliable attribute selection. In contrast, the forward stepwise regression analysis selects critical attributes all the way with the same set of data. Regression analysis is, however, not capable of splitting data into groups with different underlying models. In this research, we propose a sample-efficient regression tree (SERT) approach that combines the forward selection in regression analysis and regression tree methodologies. The proposed approach is shown to be able to fully utilize the dataset's degree of freedom and build piecewise linear model to capture the attribute effects. Case studies show that SERT is effective in discovering yield-loss causes during the yield ramp-up stage where the sample size available for analysis is relatively small." @default.
- W2140511282 created "2016-06-24" @default.
- W2140511282 creator A5037854243 @default.
- W2140511282 creator A5078294576 @default.
- W2140511282 date "2010-08-01" @default.
- W2140511282 modified "2023-10-18" @default.
- W2140511282 title "Sample-Efficient Regression Trees (SERT) for Semiconductor Yield Loss Analysis" @default.
- W2140511282 cites W1497569129 @default.
- W2140511282 cites W1504535149 @default.
- W2140511282 cites W1596515083 @default.
- W2140511282 cites W1869362176 @default.
- W2140511282 cites W2019300001 @default.
- W2140511282 cites W2044855549 @default.
- W2140511282 cites W2066442872 @default.
- W2140511282 cites W2083293675 @default.
- W2140511282 cites W2097442164 @default.
- W2140511282 cites W2107170260 @default.
- W2140511282 cites W2129523275 @default.
- W2140511282 cites W2131682353 @default.
- W2140511282 cites W4245880677 @default.
- W2140511282 doi "https://doi.org/10.1109/tsm.2010.2048968" @default.
- W2140511282 hasPublicationYear "2010" @default.
- W2140511282 type Work @default.
- W2140511282 sameAs 2140511282 @default.
- W2140511282 citedByCount "15" @default.
- W2140511282 countsByYear W21405112822012 @default.
- W2140511282 countsByYear W21405112822017 @default.
- W2140511282 countsByYear W21405112822019 @default.
- W2140511282 countsByYear W21405112822020 @default.
- W2140511282 countsByYear W21405112822021 @default.
- W2140511282 countsByYear W21405112822022 @default.
- W2140511282 crossrefType "journal-article" @default.
- W2140511282 hasAuthorship W2140511282A5037854243 @default.
- W2140511282 hasAuthorship W2140511282A5078294576 @default.
- W2140511282 hasBestOaLocation W21405112822 @default.
- W2140511282 hasConcept C105795698 @default.
- W2140511282 hasConcept C113174947 @default.
- W2140511282 hasConcept C120068334 @default.
- W2140511282 hasConcept C124101348 @default.
- W2140511282 hasConcept C129848803 @default.
- W2140511282 hasConcept C134306372 @default.
- W2140511282 hasConcept C152877465 @default.
- W2140511282 hasConcept C154945302 @default.
- W2140511282 hasConcept C170964787 @default.
- W2140511282 hasConcept C185592680 @default.
- W2140511282 hasConcept C198531522 @default.
- W2140511282 hasConcept C33923547 @default.
- W2140511282 hasConcept C35519122 @default.
- W2140511282 hasConcept C41008148 @default.
- W2140511282 hasConcept C43617362 @default.
- W2140511282 hasConcept C48921125 @default.
- W2140511282 hasConcept C81917197 @default.
- W2140511282 hasConcept C83546350 @default.
- W2140511282 hasConcept C84525736 @default.
- W2140511282 hasConceptScore W2140511282C105795698 @default.
- W2140511282 hasConceptScore W2140511282C113174947 @default.
- W2140511282 hasConceptScore W2140511282C120068334 @default.
- W2140511282 hasConceptScore W2140511282C124101348 @default.
- W2140511282 hasConceptScore W2140511282C129848803 @default.
- W2140511282 hasConceptScore W2140511282C134306372 @default.
- W2140511282 hasConceptScore W2140511282C152877465 @default.
- W2140511282 hasConceptScore W2140511282C154945302 @default.
- W2140511282 hasConceptScore W2140511282C170964787 @default.
- W2140511282 hasConceptScore W2140511282C185592680 @default.
- W2140511282 hasConceptScore W2140511282C198531522 @default.
- W2140511282 hasConceptScore W2140511282C33923547 @default.
- W2140511282 hasConceptScore W2140511282C35519122 @default.
- W2140511282 hasConceptScore W2140511282C41008148 @default.
- W2140511282 hasConceptScore W2140511282C43617362 @default.
- W2140511282 hasConceptScore W2140511282C48921125 @default.
- W2140511282 hasConceptScore W2140511282C81917197 @default.
- W2140511282 hasConceptScore W2140511282C83546350 @default.
- W2140511282 hasConceptScore W2140511282C84525736 @default.
- W2140511282 hasIssue "3" @default.
- W2140511282 hasLocation W21405112821 @default.
- W2140511282 hasLocation W21405112822 @default.
- W2140511282 hasOpenAccess W2140511282 @default.
- W2140511282 hasPrimaryLocation W21405112821 @default.
- W2140511282 hasRelatedWork W1503204137 @default.
- W2140511282 hasRelatedWork W1555242842 @default.
- W2140511282 hasRelatedWork W1989645679 @default.
- W2140511282 hasRelatedWork W2051065325 @default.
- W2140511282 hasRelatedWork W2375721435 @default.
- W2140511282 hasRelatedWork W247449116 @default.
- W2140511282 hasRelatedWork W3121557470 @default.
- W2140511282 hasRelatedWork W4240670533 @default.
- W2140511282 hasRelatedWork W4381136829 @default.
- W2140511282 hasRelatedWork W2738033194 @default.
- W2140511282 hasVolume "23" @default.
- W2140511282 isParatext "false" @default.
- W2140511282 isRetracted "false" @default.
- W2140511282 magId "2140511282" @default.
- W2140511282 workType "article" @default.