Matches in SemOpenAlex for { <https://semopenalex.org/work/W2140790710> ?p ?o ?g. }
- W2140790710 abstract "Abstract Background Complex binary traits are influenced by many factors including the main effects of many quantitative trait loci (QTLs), the epistatic effects involving more than one QTLs, environmental effects and the effects of gene-environment interactions. Although a number of QTL mapping methods for binary traits have been developed, there still lacks an efficient and powerful method that can handle both main and epistatic effects of a relatively large number of possible QTLs. Results In this paper, we use a Bayesian logistic regression model as the QTL model for binary traits that includes both main and epistatic effects. Our logistic regression model employs hierarchical priors for regression coefficients similar to the ones used in the Bayesian LASSO linear model for multiple QTL mapping for continuous traits. We develop efficient empirical Bayesian algorithms to infer the logistic regression model. Our simulation study shows that our algorithms can easily handle a QTL model with a large number of main and epistatic effects on a personal computer, and outperform five other methods examined including the LASSO, HyperLasso, BhGLM, RVM and the single-QTL mapping method based on logistic regression in terms of power of detection and false positive rate. The utility of our algorithms is also demonstrated through analysis of a real data set. A software package implementing the empirical Bayesian algorithms in this paper is freely available upon request. Conclusions The EBLASSO logistic regression method can handle a large number of effects possibly including the main and epistatic QTL effects, environmental effects and the effects of gene-environment interactions. It will be a very useful tool for multiple QTLs mapping for complex binary traits." @default.
- W2140790710 created "2016-06-24" @default.
- W2140790710 creator A5004706867 @default.
- W2140790710 creator A5045567236 @default.
- W2140790710 creator A5058769847 @default.
- W2140790710 date "2013-02-15" @default.
- W2140790710 modified "2023-10-06" @default.
- W2140790710 title "Empirical Bayesian LASSO-logistic regression for multiple binary trait locus mapping" @default.
- W2140790710 cites W1479741846 @default.
- W2140790710 cites W1566333899 @default.
- W2140790710 cites W1864923122 @default.
- W2140790710 cites W1900332431 @default.
- W2140790710 cites W1916564097 @default.
- W2140790710 cites W1936555975 @default.
- W2140790710 cites W1959944918 @default.
- W2140790710 cites W1970152865 @default.
- W2140790710 cites W1979484809 @default.
- W2140790710 cites W1982084438 @default.
- W2140790710 cites W1982652137 @default.
- W2140790710 cites W1994711766 @default.
- W2140790710 cites W2014546191 @default.
- W2140790710 cites W2016119924 @default.
- W2140790710 cites W2024022349 @default.
- W2140790710 cites W2034608799 @default.
- W2140790710 cites W2035137466 @default.
- W2140790710 cites W2037812929 @default.
- W2140790710 cites W2042557951 @default.
- W2140790710 cites W2043817373 @default.
- W2140790710 cites W2050029156 @default.
- W2140790710 cites W2071426036 @default.
- W2140790710 cites W2075745677 @default.
- W2140790710 cites W2085766216 @default.
- W2140790710 cites W2086539284 @default.
- W2140790710 cites W2088538739 @default.
- W2140790710 cites W2095741373 @default.
- W2140790710 cites W2104680311 @default.
- W2140790710 cites W2115481383 @default.
- W2140790710 cites W2122189635 @default.
- W2140790710 cites W2147802052 @default.
- W2140790710 cites W2152955459 @default.
- W2140790710 cites W2154560360 @default.
- W2140790710 cites W2158455759 @default.
- W2140790710 cites W2159510280 @default.
- W2140790710 cites W2160068277 @default.
- W2140790710 cites W2163465250 @default.
- W2140790710 cites W2318972885 @default.
- W2140790710 cites W2787894218 @default.
- W2140790710 cites W4294541781 @default.
- W2140790710 doi "https://doi.org/10.1186/1471-2156-14-5" @default.
- W2140790710 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3771412" @default.
- W2140790710 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23410082" @default.
- W2140790710 hasPublicationYear "2013" @default.
- W2140790710 type Work @default.
- W2140790710 sameAs 2140790710 @default.
- W2140790710 citedByCount "21" @default.
- W2140790710 countsByYear W21407907102013 @default.
- W2140790710 countsByYear W21407907102014 @default.
- W2140790710 countsByYear W21407907102015 @default.
- W2140790710 countsByYear W21407907102016 @default.
- W2140790710 countsByYear W21407907102018 @default.
- W2140790710 countsByYear W21407907102019 @default.
- W2140790710 countsByYear W21407907102020 @default.
- W2140790710 countsByYear W21407907102021 @default.
- W2140790710 countsByYear W21407907102022 @default.
- W2140790710 crossrefType "journal-article" @default.
- W2140790710 hasAuthorship W2140790710A5004706867 @default.
- W2140790710 hasAuthorship W2140790710A5045567236 @default.
- W2140790710 hasAuthorship W2140790710A5058769847 @default.
- W2140790710 hasBestOaLocation W21407907101 @default.
- W2140790710 hasConcept C104317684 @default.
- W2140790710 hasConcept C105795698 @default.
- W2140790710 hasConcept C107673813 @default.
- W2140790710 hasConcept C121212380 @default.
- W2140790710 hasConcept C122735190 @default.
- W2140790710 hasConcept C136764020 @default.
- W2140790710 hasConcept C151956035 @default.
- W2140790710 hasConcept C154945302 @default.
- W2140790710 hasConcept C203223496 @default.
- W2140790710 hasConcept C21249469 @default.
- W2140790710 hasConcept C30481170 @default.
- W2140790710 hasConcept C33923547 @default.
- W2140790710 hasConcept C37616216 @default.
- W2140790710 hasConcept C41008148 @default.
- W2140790710 hasConcept C54355233 @default.
- W2140790710 hasConcept C61722155 @default.
- W2140790710 hasConcept C61727976 @default.
- W2140790710 hasConcept C81941488 @default.
- W2140790710 hasConcept C86803240 @default.
- W2140790710 hasConceptScore W2140790710C104317684 @default.
- W2140790710 hasConceptScore W2140790710C105795698 @default.
- W2140790710 hasConceptScore W2140790710C107673813 @default.
- W2140790710 hasConceptScore W2140790710C121212380 @default.
- W2140790710 hasConceptScore W2140790710C122735190 @default.
- W2140790710 hasConceptScore W2140790710C136764020 @default.
- W2140790710 hasConceptScore W2140790710C151956035 @default.
- W2140790710 hasConceptScore W2140790710C154945302 @default.
- W2140790710 hasConceptScore W2140790710C203223496 @default.
- W2140790710 hasConceptScore W2140790710C21249469 @default.
- W2140790710 hasConceptScore W2140790710C30481170 @default.
- W2140790710 hasConceptScore W2140790710C33923547 @default.