Matches in SemOpenAlex for { <https://semopenalex.org/work/W2140881839> ?p ?o ?g. }
- W2140881839 endingPage "1431" @default.
- W2140881839 startingPage "1422" @default.
- W2140881839 abstract "Although many feature selection methods for classification have been developed, there is a need to identify genes in high dimensional data with censored survival outcomes. Traditional methods for gene selection in classification problems have several drawbacks. First, the majority of the gene selection approaches for classification are single-gene based. Second, many of the gene selection procedures are not embedded within the algorithm itself. The technique of random forests has been found to perform well in high-dimensional data settings with survival outcomes. It also has an embedded feature to identify variables of importance. Therefore, it is an ideal candidate for gene selection in high-dimensional data with survival outcomes. In this paper, we develop a novel method based on the random forests to identify a set of prognostic genes. We compare our method with several machine learning methods and various node split criteria using several real data sets. Our method performed well in both simulations and real data analysis. Additionally, we have shown the advantages of our approach over single-gene-based approaches. Our method incorporates multivariate correlations in microarray data for survival outcomes. The described method allows us to better utilize the information available from microarray data with survival outcomes." @default.
- W2140881839 created "2016-06-24" @default.
- W2140881839 creator A5002431770 @default.
- W2140881839 creator A5007275246 @default.
- W2140881839 creator A5010322079 @default.
- W2140881839 creator A5084337375 @default.
- W2140881839 date "2012-09-01" @default.
- W2140881839 modified "2023-10-03" @default.
- W2140881839 title "Gene Selection Using Iterative Feature Elimination Random Forests for Survival Outcomes" @default.
- W2140881839 cites W1514512256 @default.
- W2140881839 cites W1520812622 @default.
- W2140881839 cites W1539593569 @default.
- W2140881839 cites W1678356000 @default.
- W2140881839 cites W1875061881 @default.
- W2140881839 cites W1964895626 @default.
- W2140881839 cites W1975356161 @default.
- W2140881839 cites W1976564639 @default.
- W2140881839 cites W1976609425 @default.
- W2140881839 cites W1980485115 @default.
- W2140881839 cites W1989294233 @default.
- W2140881839 cites W1992055387 @default.
- W2140881839 cites W1995311488 @default.
- W2140881839 cites W2012270441 @default.
- W2140881839 cites W2031821463 @default.
- W2140881839 cites W2036242721 @default.
- W2140881839 cites W2039656279 @default.
- W2140881839 cites W2040338425 @default.
- W2140881839 cites W2041124103 @default.
- W2140881839 cites W2043235003 @default.
- W2140881839 cites W2047081748 @default.
- W2140881839 cites W2047550521 @default.
- W2140881839 cites W2059001885 @default.
- W2140881839 cites W2064347825 @default.
- W2140881839 cites W2065849886 @default.
- W2140881839 cites W2084139018 @default.
- W2140881839 cites W2088883866 @default.
- W2140881839 cites W2089838152 @default.
- W2140881839 cites W2091247026 @default.
- W2140881839 cites W2095365800 @default.
- W2140881839 cites W2103291381 @default.
- W2140881839 cites W2106468247 @default.
- W2140881839 cites W2107956883 @default.
- W2140881839 cites W2114624201 @default.
- W2140881839 cites W2116209708 @default.
- W2140881839 cites W2116882627 @default.
- W2140881839 cites W2117812871 @default.
- W2140881839 cites W2121760719 @default.
- W2140881839 cites W2123998733 @default.
- W2140881839 cites W2126676199 @default.
- W2140881839 cites W2132499964 @default.
- W2140881839 cites W2134412710 @default.
- W2140881839 cites W2141624157 @default.
- W2140881839 cites W2141826465 @default.
- W2140881839 cites W2144603192 @default.
- W2140881839 cites W2158217645 @default.
- W2140881839 cites W2159662459 @default.
- W2140881839 cites W2160450758 @default.
- W2140881839 cites W2161441016 @default.
- W2140881839 cites W2318213861 @default.
- W2140881839 cites W2911964244 @default.
- W2140881839 cites W3099478002 @default.
- W2140881839 cites W3099723433 @default.
- W2140881839 doi "https://doi.org/10.1109/tcbb.2012.63" @default.
- W2140881839 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3495190" @default.
- W2140881839 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22547432" @default.
- W2140881839 hasPublicationYear "2012" @default.
- W2140881839 type Work @default.
- W2140881839 sameAs 2140881839 @default.
- W2140881839 citedByCount "54" @default.
- W2140881839 countsByYear W21408818392013 @default.
- W2140881839 countsByYear W21408818392014 @default.
- W2140881839 countsByYear W21408818392015 @default.
- W2140881839 countsByYear W21408818392016 @default.
- W2140881839 countsByYear W21408818392017 @default.
- W2140881839 countsByYear W21408818392018 @default.
- W2140881839 countsByYear W21408818392019 @default.
- W2140881839 countsByYear W21408818392020 @default.
- W2140881839 countsByYear W21408818392021 @default.
- W2140881839 countsByYear W21408818392022 @default.
- W2140881839 countsByYear W21408818392023 @default.
- W2140881839 crossrefType "journal-article" @default.
- W2140881839 hasAuthorship W2140881839A5002431770 @default.
- W2140881839 hasAuthorship W2140881839A5007275246 @default.
- W2140881839 hasAuthorship W2140881839A5010322079 @default.
- W2140881839 hasAuthorship W2140881839A5084337375 @default.
- W2140881839 hasBestOaLocation W21408818392 @default.
- W2140881839 hasConcept C104317684 @default.
- W2140881839 hasConcept C119857082 @default.
- W2140881839 hasConcept C124101348 @default.
- W2140881839 hasConcept C138885662 @default.
- W2140881839 hasConcept C148483581 @default.
- W2140881839 hasConcept C150194340 @default.
- W2140881839 hasConcept C154945302 @default.
- W2140881839 hasConcept C161584116 @default.
- W2140881839 hasConcept C169258074 @default.
- W2140881839 hasConcept C177264268 @default.
- W2140881839 hasConcept C199360897 @default.
- W2140881839 hasConcept C2776401178 @default.