Matches in SemOpenAlex for { <https://semopenalex.org/work/W2140884902> ?p ?o ?g. }
- W2140884902 endingPage "715" @default.
- W2140884902 startingPage "698" @default.
- W2140884902 abstract "This work studies the frequency behavior of a least-square method to estimate the power spectral density of unevenly sampled signals. When the uneven sampling can be modeled as uniform sampling plus a stationary random deviation, this spectrum results in a periodic repetition of the original continuous time spectrum at the mean Nyquist frequency, with a low-pass effect affecting upper frequency bands that depends on the sampling dispersion. If the dispersion is small compared with the mean sampling period, the estimation at the base band is unbiased with practically no dispersion. When uneven sampling is modeled by a deterministic sinusoidal variation respect to the uniform sampling the obtained results are in agreement with those obtained for small random deviation. This approximation is usually well satisfied in signals like heart rate (HR) series. The theoretically predicted performance has been tested and corroborated with simulated and real HR signals. The Lomb method has been compared with the classical power spectral density (PSD) estimators that include resampling to get uniform sampling. The authors have found that the Lomb method avoids the major problem of classical methods: the low-pass effect of the resampling. Also only frequencies up to the mean Nyquist frequency should be considered (lower than 0.5 Hz if the HR is lower than 60 bpm). It is concluded that for PSD estimation of unevenly sampled signals the Lomb method is more suitable than fast Fourier transform or autoregressive estimate with linear or cubic interpolation. In extreme situations (low-HR or high-frequency components) the Lomb estimate still introduces high-frequency contamination that suggest further studies of superior performance interpolators. In the case of HR signals the authors have also marked the convenience of selecting a stationary heart rate period to carry out a heart rate variability analysis." @default.
- W2140884902 created "2016-06-24" @default.
- W2140884902 creator A5074887163 @default.
- W2140884902 creator A5079880412 @default.
- W2140884902 creator A5084527753 @default.
- W2140884902 date "1998-06-01" @default.
- W2140884902 modified "2023-09-30" @default.
- W2140884902 title "Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals" @default.
- W2140884902 cites W1518247376 @default.
- W2140884902 cites W1767708321 @default.
- W2140884902 cites W1821242055 @default.
- W2140884902 cites W1959603642 @default.
- W2140884902 cites W1967900132 @default.
- W2140884902 cites W1973322314 @default.
- W2140884902 cites W1974618482 @default.
- W2140884902 cites W1986316936 @default.
- W2140884902 cites W1992267567 @default.
- W2140884902 cites W2003451856 @default.
- W2140884902 cites W2008150142 @default.
- W2140884902 cites W2011565562 @default.
- W2140884902 cites W2026744214 @default.
- W2140884902 cites W2033482597 @default.
- W2140884902 cites W2039193521 @default.
- W2140884902 cites W2061272478 @default.
- W2140884902 cites W2062618262 @default.
- W2140884902 cites W2069043463 @default.
- W2140884902 cites W2069713042 @default.
- W2140884902 cites W2084052726 @default.
- W2140884902 cites W2106511816 @default.
- W2140884902 cites W2112400936 @default.
- W2140884902 cites W2128805352 @default.
- W2140884902 cites W2139242438 @default.
- W2140884902 cites W2147819149 @default.
- W2140884902 cites W2151756953 @default.
- W2140884902 cites W2169878755 @default.
- W2140884902 cites W2170994986 @default.
- W2140884902 doi "https://doi.org/10.1109/10.678605" @default.
- W2140884902 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9609935" @default.
- W2140884902 hasPublicationYear "1998" @default.
- W2140884902 type Work @default.
- W2140884902 sameAs 2140884902 @default.
- W2140884902 citedByCount "239" @default.
- W2140884902 countsByYear W21408849022012 @default.
- W2140884902 countsByYear W21408849022013 @default.
- W2140884902 countsByYear W21408849022014 @default.
- W2140884902 countsByYear W21408849022015 @default.
- W2140884902 countsByYear W21408849022016 @default.
- W2140884902 countsByYear W21408849022017 @default.
- W2140884902 countsByYear W21408849022018 @default.
- W2140884902 countsByYear W21408849022019 @default.
- W2140884902 countsByYear W21408849022020 @default.
- W2140884902 countsByYear W21408849022021 @default.
- W2140884902 countsByYear W21408849022022 @default.
- W2140884902 countsByYear W21408849022023 @default.
- W2140884902 crossrefType "journal-article" @default.
- W2140884902 hasAuthorship W2140884902A5074887163 @default.
- W2140884902 hasAuthorship W2140884902A5079880412 @default.
- W2140884902 hasAuthorship W2140884902A5084527753 @default.
- W2140884902 hasConcept C105795698 @default.
- W2140884902 hasConcept C106131492 @default.
- W2140884902 hasConcept C11413529 @default.
- W2140884902 hasConcept C120665830 @default.
- W2140884902 hasConcept C121332964 @default.
- W2140884902 hasConcept C126042441 @default.
- W2140884902 hasConcept C137800194 @default.
- W2140884902 hasConcept C140779682 @default.
- W2140884902 hasConcept C150921843 @default.
- W2140884902 hasConcept C168110828 @default.
- W2140884902 hasConcept C177562468 @default.
- W2140884902 hasConcept C185429906 @default.
- W2140884902 hasConcept C31942786 @default.
- W2140884902 hasConcept C31972630 @default.
- W2140884902 hasConcept C33923547 @default.
- W2140884902 hasConcept C41008148 @default.
- W2140884902 hasConcept C65914096 @default.
- W2140884902 hasConcept C76155785 @default.
- W2140884902 hasConcept C98273374 @default.
- W2140884902 hasConceptScore W2140884902C105795698 @default.
- W2140884902 hasConceptScore W2140884902C106131492 @default.
- W2140884902 hasConceptScore W2140884902C11413529 @default.
- W2140884902 hasConceptScore W2140884902C120665830 @default.
- W2140884902 hasConceptScore W2140884902C121332964 @default.
- W2140884902 hasConceptScore W2140884902C126042441 @default.
- W2140884902 hasConceptScore W2140884902C137800194 @default.
- W2140884902 hasConceptScore W2140884902C140779682 @default.
- W2140884902 hasConceptScore W2140884902C150921843 @default.
- W2140884902 hasConceptScore W2140884902C168110828 @default.
- W2140884902 hasConceptScore W2140884902C177562468 @default.
- W2140884902 hasConceptScore W2140884902C185429906 @default.
- W2140884902 hasConceptScore W2140884902C31942786 @default.
- W2140884902 hasConceptScore W2140884902C31972630 @default.
- W2140884902 hasConceptScore W2140884902C33923547 @default.
- W2140884902 hasConceptScore W2140884902C41008148 @default.
- W2140884902 hasConceptScore W2140884902C65914096 @default.
- W2140884902 hasConceptScore W2140884902C76155785 @default.
- W2140884902 hasConceptScore W2140884902C98273374 @default.
- W2140884902 hasIssue "6" @default.
- W2140884902 hasLocation W21408849021 @default.