Matches in SemOpenAlex for { <https://semopenalex.org/work/W2141014038> ?p ?o ?g. }
- W2141014038 endingPage "197" @default.
- W2141014038 startingPage "187" @default.
- W2141014038 abstract "This study presents major-, trace-element and Mg isotope data for the dissolved load and suspended particulates of Icelandic rivers draining dominantly basaltic catchments, including both glacier-fed and direct-runoff rivers. These samples provide the opportunity to understand the behaviour of Mg isotopes during chemical weathering, where variations due to lithology are not extant. Given the significant role of Mg in the carbon cycle, such variations may provide important information on the regulation of Earth's climate. Hydrothermal waters, groundwater, precipitation (glacial ice), basalt glass, olivine and representative soils have also been analysed. The dissolved load shows a wide range of δ26Mg compositions, compared to the parent basaltic glass (δ26Mg = − 0.29‰), ranging from − 0.96 to + 0.64‰, while precipitation and hydrothermal waters possess δ26Mg values of − 0.83‰ and + 0.85‰, respectively, with lower Mg concentrations than the dissolved load. Biomass activity in vegetation and organic material in soils and rivers (colloids) appear to have little effect on the Mg isotope compositions. Rather, the data suggest that Mg elemental and isotopic variations are largely controlled by the formation and stability of secondary phases in response to differing hydrological conditions. In some samples seawater, in the form of direct precipitation or glacial runoff, also appears to be an important source of Mg. Glacier-fed rivers, groundwaters, and some direct-runoff rivers, with a high pH, have higher δ26Mg than basalt, which is most likely due to the incorporation of light Mg isotopes in secondary minerals. In contrast, those direct-runoff rivers which have a relatively low pH, have low δ26Mg (relative to basalt), consistent with preferential incorporation of heavy Mg isotopes into secondary phases, although it is not possible to rule out some contribution from precipitation. Riverine suspended particulates are depleted in mobile elements, and have δ26Mg compositions values both higher and lower than unweathered basalt. In the glacier-fed and direct-runoff rivers where the δ26Mg of the dissolved phase is heavy, due to the formation of secondary phases, the suspended load is light, because it contains more of those phases. The opposite is true for the remainder of the direct-runoff rivers which have low pH. This could be due to dissolution of secondary minerals, enriched in light Mg, which are unstable at low pH, or the formation of new secondary phases." @default.
- W2141014038 created "2016-06-24" @default.
- W2141014038 creator A5001754345 @default.
- W2141014038 creator A5012196288 @default.
- W2141014038 creator A5026636409 @default.
- W2141014038 creator A5038225405 @default.
- W2141014038 creator A5063694053 @default.
- W2141014038 creator A5075056484 @default.
- W2141014038 date "2008-11-01" @default.
- W2141014038 modified "2023-10-14" @default.
- W2141014038 title "The influence of weathering processes on riverine magnesium isotopes in a basaltic terrain" @default.
- W2141014038 cites W1967020675 @default.
- W2141014038 cites W1967225568 @default.
- W2141014038 cites W1969019693 @default.
- W2141014038 cites W1980728284 @default.
- W2141014038 cites W1989167434 @default.
- W2141014038 cites W1990749591 @default.
- W2141014038 cites W1992572659 @default.
- W2141014038 cites W1998873492 @default.
- W2141014038 cites W1999827695 @default.
- W2141014038 cites W2003576163 @default.
- W2141014038 cites W2004640471 @default.
- W2141014038 cites W2005609972 @default.
- W2141014038 cites W2005682964 @default.
- W2141014038 cites W2011172116 @default.
- W2141014038 cites W2012062341 @default.
- W2141014038 cites W2014583614 @default.
- W2141014038 cites W2021530762 @default.
- W2141014038 cites W2024693414 @default.
- W2141014038 cites W2025617361 @default.
- W2141014038 cites W2027257589 @default.
- W2141014038 cites W2032086472 @default.
- W2141014038 cites W2033927007 @default.
- W2141014038 cites W2034601870 @default.
- W2141014038 cites W2035770736 @default.
- W2141014038 cites W2037134409 @default.
- W2141014038 cites W2039092794 @default.
- W2141014038 cites W2039266780 @default.
- W2141014038 cites W2042596988 @default.
- W2141014038 cites W2044933256 @default.
- W2141014038 cites W2055853410 @default.
- W2141014038 cites W2056674602 @default.
- W2141014038 cites W2057683220 @default.
- W2141014038 cites W2059392965 @default.
- W2141014038 cites W2059938784 @default.
- W2141014038 cites W2065004370 @default.
- W2141014038 cites W2066091551 @default.
- W2141014038 cites W2066964298 @default.
- W2141014038 cites W2080482098 @default.
- W2141014038 cites W2083191292 @default.
- W2141014038 cites W2084825481 @default.
- W2141014038 cites W2084849445 @default.
- W2141014038 cites W2098060258 @default.
- W2141014038 cites W2119818932 @default.
- W2141014038 cites W2133623351 @default.
- W2141014038 cites W2142681232 @default.
- W2141014038 cites W2143262029 @default.
- W2141014038 cites W2151517618 @default.
- W2141014038 cites W2157677644 @default.
- W2141014038 cites W2157883338 @default.
- W2141014038 cites W2159767575 @default.
- W2141014038 cites W2161032704 @default.
- W2141014038 cites W2164937041 @default.
- W2141014038 cites W2323911644 @default.
- W2141014038 cites W2327637686 @default.
- W2141014038 cites W4211181942 @default.
- W2141014038 cites W4239817473 @default.
- W2141014038 doi "https://doi.org/10.1016/j.epsl.2008.09.020" @default.
- W2141014038 hasPublicationYear "2008" @default.
- W2141014038 type Work @default.
- W2141014038 sameAs 2141014038 @default.
- W2141014038 citedByCount "201" @default.
- W2141014038 countsByYear W21410140382012 @default.
- W2141014038 countsByYear W21410140382013 @default.
- W2141014038 countsByYear W21410140382014 @default.
- W2141014038 countsByYear W21410140382015 @default.
- W2141014038 countsByYear W21410140382016 @default.
- W2141014038 countsByYear W21410140382017 @default.
- W2141014038 countsByYear W21410140382018 @default.
- W2141014038 countsByYear W21410140382019 @default.
- W2141014038 countsByYear W21410140382020 @default.
- W2141014038 countsByYear W21410140382021 @default.
- W2141014038 countsByYear W21410140382022 @default.
- W2141014038 countsByYear W21410140382023 @default.
- W2141014038 crossrefType "journal-article" @default.
- W2141014038 hasAuthorship W2141014038A5001754345 @default.
- W2141014038 hasAuthorship W2141014038A5012196288 @default.
- W2141014038 hasAuthorship W2141014038A5026636409 @default.
- W2141014038 hasAuthorship W2141014038A5038225405 @default.
- W2141014038 hasAuthorship W2141014038A5063694053 @default.
- W2141014038 hasAuthorship W2141014038A5075056484 @default.
- W2141014038 hasConcept C107054158 @default.
- W2141014038 hasConcept C107872376 @default.
- W2141014038 hasConcept C121332964 @default.
- W2141014038 hasConcept C127313418 @default.
- W2141014038 hasConcept C153294291 @default.
- W2141014038 hasConcept C159390177 @default.
- W2141014038 hasConcept C159750122 @default.