Matches in SemOpenAlex for { <https://semopenalex.org/work/W2141034844> ?p ?o ?g. }
- W2141034844 endingPage "588" @default.
- W2141034844 startingPage "579" @default.
- W2141034844 abstract "Summary Ecologists use approaches based on plant functional traits to tackle several fundamental and applied questions. Although a perfect characterization of functional trait structure requires the measurement of all the individuals in communities, this is prohibitively resource‐consuming. Consequently, the general practice is to average the trait values of a reduced number of individuals per species. However, there are different alternatives regarding the number, identity and spatial location of the individuals chosen to calculate species‐averaged trait values. In this study, we compared different strategies for sampling functional traits, using community‐weighted mean trait values (CWM) and the Rao index of functional diversity (FD). We intensively sampled the functional trait structure along a topographical gradient in a Mediterranean grassland, obtaining accurate estimations of the ‘real’ values of these indices (CWM I and FD I ) for three traits (height, leaf area and specific leaf area). We simulated three different sampling strategies differing in the spatial location of the individuals used to estimate species‐mean trait: (i) average of the whole gradient (GLO), (ii) average of the sampling unit in which the abundances of species maximize (MAX) and (iii) average of a reduced number of individuals per species and sampling unit (LOC). For each strategy, we simulated different sampling intensities (number of individuals sampled). For each trait, we examined the ability of each strategy and sampling intensity to accurately estimate CWM I and FD I , as well as their ability to detect changes in functional trait structure along the topographical gradient. LOC outperformed the other strategies in terms of accuracy and bias, and was much more efficient to describe changes along the gradient, regardless of the traits and indicators considered. Furthermore, LOC was the only strategy that improved consistently as sampling intensity increased, especially at low levels of intensity. Our results indicate that the impact of considering intraspecific variability in trait values can be greater than commonly assumed. Strategies that neglect this source of variability can result in inaccurate or biased estimations of the functional trait structure of plant communities. Most importantly, we show that intraspecific variability can be taken into consideration without any increases in the total number of individuals measured." @default.
- W2141034844 created "2016-06-24" @default.
- W2141034844 creator A5036430914 @default.
- W2141034844 creator A5038967521 @default.
- W2141034844 creator A5079458571 @default.
- W2141034844 creator A5084114422 @default.
- W2141034844 date "2014-11-25" @default.
- W2141034844 modified "2023-10-05" @default.
- W2141034844 title "More for less: sampling strategies of plant functional traits across local environmental gradients" @default.
- W2141034844 cites W1588034641 @default.
- W2141034844 cites W1603378435 @default.
- W2141034844 cites W1609810996 @default.
- W2141034844 cites W1776243668 @default.
- W2141034844 cites W1964758641 @default.
- W2141034844 cites W1965719535 @default.
- W2141034844 cites W2012146634 @default.
- W2141034844 cites W2016497407 @default.
- W2141034844 cites W2021050140 @default.
- W2141034844 cites W2032081489 @default.
- W2141034844 cites W2038151628 @default.
- W2141034844 cites W2060230965 @default.
- W2141034844 cites W2064604453 @default.
- W2141034844 cites W2065885555 @default.
- W2141034844 cites W2073353978 @default.
- W2141034844 cites W2076325342 @default.
- W2141034844 cites W2083044213 @default.
- W2141034844 cites W2093455004 @default.
- W2141034844 cites W2098224723 @default.
- W2141034844 cites W2107625277 @default.
- W2141034844 cites W2112775986 @default.
- W2141034844 cites W2114331584 @default.
- W2141034844 cites W2114973925 @default.
- W2141034844 cites W2115696621 @default.
- W2141034844 cites W2115952566 @default.
- W2141034844 cites W2115959469 @default.
- W2141034844 cites W2121119057 @default.
- W2141034844 cites W2128297914 @default.
- W2141034844 cites W2129802470 @default.
- W2141034844 cites W2129994723 @default.
- W2141034844 cites W2133540825 @default.
- W2141034844 cites W2134000397 @default.
- W2141034844 cites W2141034844 @default.
- W2141034844 cites W2144042033 @default.
- W2141034844 cites W2147370568 @default.
- W2141034844 cites W2150396089 @default.
- W2141034844 cites W2167109558 @default.
- W2141034844 cites W2168173042 @default.
- W2141034844 doi "https://doi.org/10.1111/1365-2435.12366" @default.
- W2141034844 hasPublicationYear "2014" @default.
- W2141034844 type Work @default.
- W2141034844 sameAs 2141034844 @default.
- W2141034844 citedByCount "57" @default.
- W2141034844 countsByYear W21410348442015 @default.
- W2141034844 countsByYear W21410348442016 @default.
- W2141034844 countsByYear W21410348442017 @default.
- W2141034844 countsByYear W21410348442018 @default.
- W2141034844 countsByYear W21410348442019 @default.
- W2141034844 countsByYear W21410348442020 @default.
- W2141034844 countsByYear W21410348442021 @default.
- W2141034844 countsByYear W21410348442022 @default.
- W2141034844 countsByYear W21410348442023 @default.
- W2141034844 crossrefType "journal-article" @default.
- W2141034844 hasAuthorship W2141034844A5036430914 @default.
- W2141034844 hasAuthorship W2141034844A5038967521 @default.
- W2141034844 hasAuthorship W2141034844A5079458571 @default.
- W2141034844 hasAuthorship W2141034844A5084114422 @default.
- W2141034844 hasBestOaLocation W21410348441 @default.
- W2141034844 hasConcept C105795698 @default.
- W2141034844 hasConcept C106131492 @default.
- W2141034844 hasConcept C106934330 @default.
- W2141034844 hasConcept C122748992 @default.
- W2141034844 hasConcept C140779682 @default.
- W2141034844 hasConcept C175570560 @default.
- W2141034844 hasConcept C183688256 @default.
- W2141034844 hasConcept C18903297 @default.
- W2141034844 hasConcept C199360897 @default.
- W2141034844 hasConcept C2776615292 @default.
- W2141034844 hasConcept C2988890453 @default.
- W2141034844 hasConcept C31972630 @default.
- W2141034844 hasConcept C33923547 @default.
- W2141034844 hasConcept C41008148 @default.
- W2141034844 hasConcept C59822182 @default.
- W2141034844 hasConcept C86803240 @default.
- W2141034844 hasConceptScore W2141034844C105795698 @default.
- W2141034844 hasConceptScore W2141034844C106131492 @default.
- W2141034844 hasConceptScore W2141034844C106934330 @default.
- W2141034844 hasConceptScore W2141034844C122748992 @default.
- W2141034844 hasConceptScore W2141034844C140779682 @default.
- W2141034844 hasConceptScore W2141034844C175570560 @default.
- W2141034844 hasConceptScore W2141034844C183688256 @default.
- W2141034844 hasConceptScore W2141034844C18903297 @default.
- W2141034844 hasConceptScore W2141034844C199360897 @default.
- W2141034844 hasConceptScore W2141034844C2776615292 @default.
- W2141034844 hasConceptScore W2141034844C2988890453 @default.
- W2141034844 hasConceptScore W2141034844C31972630 @default.
- W2141034844 hasConceptScore W2141034844C33923547 @default.
- W2141034844 hasConceptScore W2141034844C41008148 @default.
- W2141034844 hasConceptScore W2141034844C59822182 @default.