Matches in SemOpenAlex for { <https://semopenalex.org/work/W2141043344> ?p ?o ?g. }
- W2141043344 endingPage "108" @default.
- W2141043344 startingPage "92" @default.
- W2141043344 abstract "Abstract Speleothems are capable of providing information on the response of middle and low-latitude terrestrial environments to global climate change during the Pleistocene and Holocene. Multiproxy speleothem studies, however, have demonstrated that complex interactions can occur in cave settings between processes that are directly and indirectly related to climate change. Thorough and extended monitoring of modern cave environments is necessary in order to fully understand how each cave responds to these processes on seasonal and interannual timescales, and how environmental signals are preserved in speleothem carbonate. Regular environmental monitoring began at Black Chasm Cavern in the Sierra Nevada foothills, California, during the winter of 2006–2007. Monthly measurements of cave air temperature, humidity, and p CO 2 in Black Chasm demonstrate that the cave is ventilated in the winter months, when cold, dense surface air sinks into the cave. Cave drip-water flow nearly ceases during the late summer and autumn, increases substantially during the winter and spring, and responds within hours to storm events during the height of the rainy season. Rainwater and drip water δ 18 O and δ 2 H are controlled by variations in surface air temperature and moisture source. While rainfall source influences rainwater isotopes through individual storm events, it has less influence on drip water isotopic composition due to mixing of recharge waters delivered by different rainfall events in the epikarst. Variations in drip water chemistry ( δ 13 C, Mg/Ca, and Sr/Ca) indicate that the greatest level of calcite precipitation upflow from the drip water collection site (prior calcite precipitation) occurs during the autumn (October–November) when drip rates are slow and cave air p CO 2 is low. The least prior calcite precipitation occurs during the summer (July–August) when drip rates are slow but cave air p CO 2 is at a maximum. While p CO 2 is a primary control on prior calcite precipitation during all seasons, the predominant influence of drip rate variability on prior calcite precipitation is evident when considering only those seasons (winter, spring, and autumn) characterized by low cave air p CO 2 . Thus, drip rate variability, and in turn rainfall amount, should provide the primary control on trace element variations ultimately captured in speleothem calcite. The isotopic and chemical variability observed in Black Chasm drip waters supports previous interpretations of speleothem paleoclimate proxy records from a nearby cave where such monitoring is not feasible. Observations of the modern cave environment at Black Chasm provide a reference point for the interpretation of stalagmite proxy records from similar seasonal (Mediterranean) climates." @default.
- W2141043344 created "2016-06-24" @default.
- W2141043344 creator A5013219967 @default.
- W2141043344 creator A5020504505 @default.
- W2141043344 creator A5081538192 @default.
- W2141043344 date "2012-08-01" @default.
- W2141043344 modified "2023-10-16" @default.
- W2141043344 title "Response of a modern cave system to large seasonal precipitation variability" @default.
- W2141043344 cites W1651909790 @default.
- W2141043344 cites W1674993078 @default.
- W2141043344 cites W1733550608 @default.
- W2141043344 cites W1964892287 @default.
- W2141043344 cites W1966282214 @default.
- W2141043344 cites W1966432906 @default.
- W2141043344 cites W1972238189 @default.
- W2141043344 cites W1973906747 @default.
- W2141043344 cites W1976602831 @default.
- W2141043344 cites W1979825474 @default.
- W2141043344 cites W1980495087 @default.
- W2141043344 cites W1981926445 @default.
- W2141043344 cites W1985002123 @default.
- W2141043344 cites W1992501984 @default.
- W2141043344 cites W1996172693 @default.
- W2141043344 cites W1997144852 @default.
- W2141043344 cites W1998572667 @default.
- W2141043344 cites W2004466598 @default.
- W2141043344 cites W2005838126 @default.
- W2141043344 cites W2010236289 @default.
- W2141043344 cites W2013428948 @default.
- W2141043344 cites W2026538666 @default.
- W2141043344 cites W2060341446 @default.
- W2141043344 cites W2063009391 @default.
- W2141043344 cites W2063288861 @default.
- W2141043344 cites W2073124186 @default.
- W2141043344 cites W2074912297 @default.
- W2141043344 cites W2075351686 @default.
- W2141043344 cites W2081074636 @default.
- W2141043344 cites W2081701626 @default.
- W2141043344 cites W2084039640 @default.
- W2141043344 cites W2085493944 @default.
- W2141043344 cites W2086192317 @default.
- W2141043344 cites W2091746745 @default.
- W2141043344 cites W2093426636 @default.
- W2141043344 cites W2095648000 @default.
- W2141043344 cites W2097695931 @default.
- W2141043344 cites W2103989899 @default.
- W2141043344 cites W2104768705 @default.
- W2141043344 cites W2106275368 @default.
- W2141043344 cites W2106700095 @default.
- W2141043344 cites W2109334730 @default.
- W2141043344 cites W2110991103 @default.
- W2141043344 cites W2118282237 @default.
- W2141043344 cites W2121713848 @default.
- W2141043344 cites W2125940788 @default.
- W2141043344 cites W2130634444 @default.
- W2141043344 cites W2139404099 @default.
- W2141043344 cites W2140461722 @default.
- W2141043344 cites W2141643578 @default.
- W2141043344 cites W2146543851 @default.
- W2141043344 cites W2151103985 @default.
- W2141043344 cites W2158814629 @default.
- W2141043344 cites W2160960539 @default.
- W2141043344 cites W2161679449 @default.
- W2141043344 cites W2164232903 @default.
- W2141043344 cites W2168139166 @default.
- W2141043344 cites W2172293448 @default.
- W2141043344 cites W2177829236 @default.
- W2141043344 cites W2515389755 @default.
- W2141043344 doi "https://doi.org/10.1016/j.gca.2012.05.027" @default.
- W2141043344 hasPublicationYear "2012" @default.
- W2141043344 type Work @default.
- W2141043344 sameAs 2141043344 @default.
- W2141043344 citedByCount "86" @default.
- W2141043344 countsByYear W21410433442012 @default.
- W2141043344 countsByYear W21410433442013 @default.
- W2141043344 countsByYear W21410433442014 @default.
- W2141043344 countsByYear W21410433442015 @default.
- W2141043344 countsByYear W21410433442016 @default.
- W2141043344 countsByYear W21410433442017 @default.
- W2141043344 countsByYear W21410433442018 @default.
- W2141043344 countsByYear W21410433442019 @default.
- W2141043344 countsByYear W21410433442020 @default.
- W2141043344 countsByYear W21410433442021 @default.
- W2141043344 countsByYear W21410433442022 @default.
- W2141043344 countsByYear W21410433442023 @default.
- W2141043344 crossrefType "journal-article" @default.
- W2141043344 hasAuthorship W2141043344A5013219967 @default.
- W2141043344 hasAuthorship W2141043344A5020504505 @default.
- W2141043344 hasAuthorship W2141043344A5081538192 @default.
- W2141043344 hasConcept C100970517 @default.
- W2141043344 hasConcept C107054158 @default.
- W2141043344 hasConcept C127313418 @default.
- W2141043344 hasConcept C153294291 @default.
- W2141043344 hasConcept C166957645 @default.
- W2141043344 hasConcept C171878925 @default.
- W2141043344 hasConcept C205649164 @default.
- W2141043344 hasConcept C39432304 @default.
- W2141043344 hasConcept C49204034 @default.