Matches in SemOpenAlex for { <https://semopenalex.org/work/W2141085237> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2141085237 abstract "We show that if $A$ is a finite dimensional associative $H$-module algebra for an arbitrary Hopf algebra $H$, the proof of the analog of Amitsur's conjecture for $H$-codimensions of $A$ can be, roughly speaking, reduced to the case when $A$ is $H$-simple. In particular, we prove that, despite the fact that the Jacobson radical of an $H_{m^2}(zeta)$-module algebra, where $H_{m^2}(zeta)$ is a Taft algebra, is not necessarily an $H_{m^2}(zeta)$-submodule, codimensions of polynomial $H_{m^2}(zeta)$-identities of every finite dimensional associative $H_{m^2}(zeta)$-module algebra over a field of characteristic $0$ satisfy the analog of Amitsur's conjecture." @default.
- W2141085237 created "2016-06-24" @default.
- W2141085237 creator A5031619685 @default.
- W2141085237 date "2015-05-12" @default.
- W2141085237 modified "2023-09-27" @default.
- W2141085237 title "On codimension growth of $H$-identities in algebras with a not necessarily $H$-invariant radical" @default.
- W2141085237 hasPublicationYear "2015" @default.
- W2141085237 type Work @default.
- W2141085237 sameAs 2141085237 @default.
- W2141085237 citedByCount "0" @default.
- W2141085237 crossrefType "posted-content" @default.
- W2141085237 hasAuthorship W2141085237A5031619685 @default.
- W2141085237 hasConcept C134306372 @default.
- W2141085237 hasConcept C136119220 @default.
- W2141085237 hasConcept C159423971 @default.
- W2141085237 hasConcept C190470478 @default.
- W2141085237 hasConcept C202444582 @default.
- W2141085237 hasConcept C2780990831 @default.
- W2141085237 hasConcept C29712632 @default.
- W2141085237 hasConcept C33923547 @default.
- W2141085237 hasConcept C37914503 @default.
- W2141085237 hasConcept C83979697 @default.
- W2141085237 hasConcept C90119067 @default.
- W2141085237 hasConcept C9652623 @default.
- W2141085237 hasConceptScore W2141085237C134306372 @default.
- W2141085237 hasConceptScore W2141085237C136119220 @default.
- W2141085237 hasConceptScore W2141085237C159423971 @default.
- W2141085237 hasConceptScore W2141085237C190470478 @default.
- W2141085237 hasConceptScore W2141085237C202444582 @default.
- W2141085237 hasConceptScore W2141085237C2780990831 @default.
- W2141085237 hasConceptScore W2141085237C29712632 @default.
- W2141085237 hasConceptScore W2141085237C33923547 @default.
- W2141085237 hasConceptScore W2141085237C37914503 @default.
- W2141085237 hasConceptScore W2141085237C83979697 @default.
- W2141085237 hasConceptScore W2141085237C90119067 @default.
- W2141085237 hasConceptScore W2141085237C9652623 @default.
- W2141085237 hasLocation W21410852371 @default.
- W2141085237 hasOpenAccess W2141085237 @default.
- W2141085237 hasPrimaryLocation W21410852371 @default.
- W2141085237 hasRelatedWork W1514805923 @default.
- W2141085237 hasRelatedWork W1983147651 @default.
- W2141085237 hasRelatedWork W2004131938 @default.
- W2141085237 hasRelatedWork W2033549448 @default.
- W2141085237 hasRelatedWork W2051822785 @default.
- W2141085237 hasRelatedWork W2077531024 @default.
- W2141085237 hasRelatedWork W2119771549 @default.
- W2141085237 hasRelatedWork W2167679882 @default.
- W2141085237 hasRelatedWork W2168436590 @default.
- W2141085237 hasRelatedWork W2266915981 @default.
- W2141085237 hasRelatedWork W2347697362 @default.
- W2141085237 hasRelatedWork W2500654601 @default.
- W2141085237 hasRelatedWork W2950496021 @default.
- W2141085237 hasRelatedWork W2952827874 @default.
- W2141085237 hasRelatedWork W2963197999 @default.
- W2141085237 hasRelatedWork W2963534057 @default.
- W2141085237 hasRelatedWork W3012802561 @default.
- W2141085237 hasRelatedWork W3013038106 @default.
- W2141085237 hasRelatedWork W3047764774 @default.
- W2141085237 hasRelatedWork W3106120360 @default.
- W2141085237 isParatext "false" @default.
- W2141085237 isRetracted "false" @default.
- W2141085237 magId "2141085237" @default.
- W2141085237 workType "article" @default.