Matches in SemOpenAlex for { <https://semopenalex.org/work/W2141159639> ?p ?o ?g. }
- W2141159639 endingPage "1161" @default.
- W2141159639 startingPage "1133" @default.
- W2141159639 abstract "The Sterling Hill deposit is an isoclinically folded sequence of zinc-, iron-, and manganese-rich strata surrounded by the Franklin Marble. The most metal-rich layers are composed of combinations of willemite, franklinitc, zincitc, and calcite; other layers contain calc-silicate minerals and calcite. Structural, petrologic, and geochronologic evidence indicates that the deformation and mineral assemblages observed today were produced during granulite-grade Grenville metamorphism of the deposit at about 1.0 Ga.In general, the oxygen isotope and chemical compositions of individual minerals vary from lithologic layer to lithologic layer but are uniform within layers which suggests that mineral compositions were controlled by the bulk compositions of the rocks. Important exceptions to this rule occur near faults and fractures where the deposit was infiltrated by retrograde metamorphic fluids. In these areas, the rocks commonly contain hydrous minerals which have replaced anhydrous assemblages, and the minerals have been exchanged to larger delta 18 O values.Willemite and zincite are stable at higher f (sub O 2 ) /f (sub S 2 ) than pyrite and pyrrhotite which implies that the ores are not chemically equilibrated with the surrounding Franklin Marble but are higher in oxidation state and/or lower in sulfidation state. The deposit also contrasts with the surrounding marble in oxygen isotope composition. Bulk delta 18 O values for ore layers range from about 6 to 13 per mil, and thin marble layers interbedded with the ores are consistently about 15 per mil. The Franklin Marble is 20 to 25 per mil.Models for the protolith are presented in which the bulk oxygen isotope compositions and bulk chemical compositions of the rocks are assumed to reflect protolith compositions modified by metamorphic devolatilization. The mineralogy of the protolith is inferred from the bulk chemical compositions of the rocks and by analogy with the mineralogy of other metal-rich oxidized rocks, and the minerals are assumed to have equilibrated isotopically with the fluid which formed them. The application of the models which require the fewest assumptions is to the marbles interbedded with the ore layers. Their isotopic compositions appear to require either equilibration with 18 O-depleted meteoric water at the earth's surface temperatures, or equilibration with a more 18 O-enriehed water at temperatures characteristic of hydrothermal or metamorphic processes. Application of the models to the ore layers suggests that the last fluid-dominated event took place at 150 degrees + or - 50 degrees C rather than at the earth's surface temperatures. Structural features of the deposit also support the higher temperature formation in that they appear to be incompatible with an origin by weathering.Exposure to seawater is the most plausible alternative to subaerial weathering for producing the high oxidation state-low sulfidation state of the protolith. An extremely large volume of seawater would have been required to oxidize the entire metal inventory of the deposit. Thus, the formation of the oxidized protolith is best inferred to have taken place on the Proterozoie sea floor or in shallowly buried sediments which were well irrigated by seawater. The closest modern analogues for Sterling Hill, and by analogy the nearby Franklin Furnace deposit, are the sulfide-poor strata in the metalliferous sediments beneath the Red Sea brine pools. There are, however, significant differences between the two occurrences." @default.
- W2141159639 created "2016-06-24" @default.
- W2141159639 creator A5006897234 @default.
- W2141159639 creator A5013913463 @default.
- W2141159639 creator A5020580991 @default.
- W2141159639 date "1990-10-01" @default.
- W2141159639 modified "2023-09-26" @default.
- W2141159639 title "Petrology and stable isotope geochemistry of the metamorphosed zinc-iron-manganese deposit at Sterling Hill, New Jersey" @default.
- W2141159639 cites W1527731233 @default.
- W2141159639 cites W1547907389 @default.
- W2141159639 cites W1579023509 @default.
- W2141159639 cites W1970169451 @default.
- W2141159639 cites W1970658925 @default.
- W2141159639 cites W1974132282 @default.
- W2141159639 cites W1974513838 @default.
- W2141159639 cites W1977285023 @default.
- W2141159639 cites W1985415210 @default.
- W2141159639 cites W1987373332 @default.
- W2141159639 cites W1989404807 @default.
- W2141159639 cites W2001520383 @default.
- W2141159639 cites W2008281306 @default.
- W2141159639 cites W2009657598 @default.
- W2141159639 cites W2010328184 @default.
- W2141159639 cites W2011564188 @default.
- W2141159639 cites W2012163116 @default.
- W2141159639 cites W2016032974 @default.
- W2141159639 cites W2017633313 @default.
- W2141159639 cites W2028638309 @default.
- W2141159639 cites W2030959288 @default.
- W2141159639 cites W2035747979 @default.
- W2141159639 cites W2039209497 @default.
- W2141159639 cites W2040124499 @default.
- W2141159639 cites W2043990794 @default.
- W2141159639 cites W2047042277 @default.
- W2141159639 cites W2047840014 @default.
- W2141159639 cites W2048093770 @default.
- W2141159639 cites W2052848232 @default.
- W2141159639 cites W2054489751 @default.
- W2141159639 cites W2058656947 @default.
- W2141159639 cites W2060258817 @default.
- W2141159639 cites W2062459959 @default.
- W2141159639 cites W2064355751 @default.
- W2141159639 cites W2066856460 @default.
- W2141159639 cites W2068202901 @default.
- W2141159639 cites W2072142392 @default.
- W2141159639 cites W2081551540 @default.
- W2141159639 cites W2086860602 @default.
- W2141159639 cites W2090930115 @default.
- W2141159639 cites W2091429053 @default.
- W2141159639 cites W2095683741 @default.
- W2141159639 cites W2104591486 @default.
- W2141159639 cites W2119741427 @default.
- W2141159639 cites W2124648655 @default.
- W2141159639 cites W2133918056 @default.
- W2141159639 cites W2140603247 @default.
- W2141159639 cites W2152395416 @default.
- W2141159639 cites W2155720400 @default.
- W2141159639 cites W2157026125 @default.
- W2141159639 cites W2161334199 @default.
- W2141159639 cites W2164927520 @default.
- W2141159639 cites W2165674260 @default.
- W2141159639 cites W2305864366 @default.
- W2141159639 cites W2314020982 @default.
- W2141159639 cites W2319095826 @default.
- W2141159639 cites W2408261671 @default.
- W2141159639 cites W2512318510 @default.
- W2141159639 cites W2567446475 @default.
- W2141159639 cites W2596536544 @default.
- W2141159639 cites W268348790 @default.
- W2141159639 cites W2910890078 @default.
- W2141159639 cites W2982623517 @default.
- W2141159639 cites W3097553647 @default.
- W2141159639 cites W3101515196 @default.
- W2141159639 cites W311128867 @default.
- W2141159639 cites W617353587 @default.
- W2141159639 cites W643146704 @default.
- W2141159639 doi "https://doi.org/10.2113/gsecongeo.85.6.1133" @default.
- W2141159639 hasPublicationYear "1990" @default.
- W2141159639 type Work @default.
- W2141159639 sameAs 2141159639 @default.
- W2141159639 citedByCount "48" @default.
- W2141159639 countsByYear W21411596392012 @default.
- W2141159639 countsByYear W21411596392015 @default.
- W2141159639 countsByYear W21411596392016 @default.
- W2141159639 countsByYear W21411596392017 @default.
- W2141159639 countsByYear W21411596392018 @default.
- W2141159639 countsByYear W21411596392019 @default.
- W2141159639 countsByYear W21411596392020 @default.
- W2141159639 countsByYear W21411596392021 @default.
- W2141159639 countsByYear W21411596392022 @default.
- W2141159639 crossrefType "journal-article" @default.
- W2141159639 hasAuthorship W2141159639A5006897234 @default.
- W2141159639 hasAuthorship W2141159639A5013913463 @default.
- W2141159639 hasAuthorship W2141159639A5020580991 @default.
- W2141159639 hasConcept C121332964 @default.
- W2141159639 hasConcept C127313418 @default.
- W2141159639 hasConcept C164304813 @default.
- W2141159639 hasConcept C165349299 @default.