Matches in SemOpenAlex for { <https://semopenalex.org/work/W2141666049> ?p ?o ?g. }
- W2141666049 endingPage "642" @default.
- W2141666049 startingPage "638" @default.
- W2141666049 abstract "No AccessJournal of UrologyAdult Urology1 Feb 2013A Comparison of Models for Predicting Sperm Retrieval Before Microdissection Testicular Sperm Extraction in Men with Nonobstructive Azoospermia Ranjith Ramasamy, Wendy O. Padilla, E. Charles Osterberg, Abhishek Srivastava, Jennifer E. Reifsnyder, Craig Niederberger, and Peter N. Schlegel Ranjith RamasamyRanjith Ramasamy More articles by this author , Wendy O. PadillaWendy O. Padilla More articles by this author , E. Charles OsterbergE. Charles Osterberg More articles by this author , Abhishek SrivastavaAbhishek Srivastava More articles by this author , Jennifer E. ReifsnyderJennifer E. Reifsnyder More articles by this author , Craig NiederbergerCraig Niederberger Financial interest and/or other relationship with NexHand, Global Advanced Medical Care, American Society for Reproductive Medicine and American Urological Association. More articles by this author , and Peter N. SchlegelPeter N. Schlegel More articles by this author View All Author Informationhttps://doi.org/10.1016/j.juro.2012.09.038AboutFull TextPDF ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareFacebookLinked InTwitterEmail Abstract Purpose: We developed an artificial neural network and nomogram using readily available clinical features to model the chance of identifying sperm with microdissection testicular sperm extraction by readily available preoperative clinical parameters for men with nonobstructive azoospermia. Materials and Methods: We reviewed the records of 1,026 men who underwent microdissection testicular sperm extraction. Patient age, follicle-stimulating hormone level, testicular volume, history of cryptorchidism, Klinefelter syndrome and presence of varicocele were included in the models. For the artificial neural network the data set was divided randomly into a training set (75%) and a test set (25%) with n1/n2 cross validation used to evaluate model accuracy, and then modeled with a neural computational system. In addition, a nomogram with calibration plots was developed to predict sperm retrieval with microdissection testicular sperm extraction. We compared these models to logistic regression. Results: The ROC area for the neural computational system in the test set was 0.641. The neural network correctly predicted the outcome in 152 of the 256 test set patients (59.4%). The nomogram AUC was 0.59 and adequately calibrated. Multivariable logistic regression demonstrated patient age, history of Klinefelter syndrome and cryptorchidism to be significant predictors of sperm retrieval (p <0.05). However, follicle-stimulating hormone and testicular volume were not significant by internal validation. Conclusions: We modeled a combination of well described preoperative clinical parameters to predict sperm retrieval using a neural computational system and nomogram with acceptable predictive values. The generalizability of these findings requires external validation. References 1 : Serum levels of inhibin B and follicle-stimulating hormone may predict successful sperm retrieval in men with azoospermia who are undergoing testicular sperm extraction. Fertil Steril2002; 78: 1195. Google Scholar 2 : Serum inhibin B may be a reliable marker of the presence of testicular spermatozoa in patients with nonobstructive azoospermia. Fertil Steril2001; 76: 1124. Google Scholar 3 : Establishment of predictive variables associated with testicular sperm retrieval in men with non-obstructive azoospermia. Hum Reprod1999; 14: 1005. Google Scholar 4 : Testicular sperm extraction with intracytoplasmic sperm injection for nonobstructive azoospermia: testicular histology can predict success of sperm retrieval. J Urol1999; 161: 112. Link, Google Scholar 5 : Computational tools for the modern andrologist. J Androl1996; 17: 462. Google Scholar 6 : An artificial neural network for predicting the presence of spermatozoa in the testes of men with nonobstructive azoospermia. J Urol2004; 171: 2354. Link, Google Scholar 7 : Artificial neural networks for decision-making in urologic oncology. Rev Urol2003; 5: 15. Google Scholar 8 : Artificial neural networks for decision-making in urologic oncology. Eur Urol2003; 43: 596. Google Scholar 9 : An artificial neural network for prostate cancer staging when serum prostate specific antigen is 10 ng/ml. or less. J Urol2003; 169: 1724. Link, Google Scholar 10 : WHO Laboratory Manual for the Examination of Human Semen and Sperm-Cervical Mucus Interaction. Cambridge, United Kingdom: Cambridge University Press1992. Google Scholar 11 : Neural computation in urology: an orientation. Mol Urol2001; 5: 133. Google Scholar 12 : Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med1996; 15: 361. Google Scholar 13 : Prediction of survival after radical cystectomy for invasive bladder carcinoma: risk group stratification, nomograms or artificial neural networks?. J Urol2009; 182: 466. Link, Google Scholar 14 : Artificial neural network (ANN) velocity better identifies benign prostatic hyperplasia but not prostate cancer compared with PSA velocity. BMC Urol2008; 8: 10. Google Scholar 15 : An artificial neural network for five different assay systems of prostate-specific antigen in prostate cancer diagnostics. BJU Int2008; 102: 799. Google Scholar 16 : Prediction of spontaneous ureteral calculous passage by an artificial neural network. J Urol2000; 164: 326. Link, Google Scholar 17 : Seminal plasma anti-Mullerian hormone level correlates with semen parameters but does not predict success of testicular sperm extraction (TESE). Asian J Androl2007; 9: 265. Google Scholar 18 : Can serum Inhibin B and FSH levels, testicular histology and volume predict the outcome of testicular sperm extraction in patients with non-obstructive azoospermia?. Int Urol Nephrol2006; 38: 629. Google Scholar 19 : Can biological or clinical parameters predict testicular sperm recovery in 47, XXY Klinefelter's syndrome patients?. Hum Reprod2004; 19: 1135. Google Scholar 20 : Serum inhibin B cannot predict testicular sperm retrieval in patients with non-obstructive azoospermia. Hum Reprod2002; 17: 971. Google Scholar 21 : High serum FSH levels in men with nonobstructive azoospermia does not affect success of microdissection testicular sperm extraction. Fertil Steril2009; 92: 590. Google Scholar Departments of Urology, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, New York, and University of Illinois at Chicago (WOP, CN), Chicago, Illinois© 2013 by American Urological Association Education and Research, Inc.FiguresReferencesRelatedDetailsCited byNiederberger C (2020) Re: Fertility-Enhancing Male Reproductive Surgery: Glimpses into the Past and Thoughts for the FutureJournal of Urology, VOL. 203, NO. 6, (1046-1046), Online publication date: 1-Jun-2020.Niederberger C (2018) Re: How Successful is TESE-ICSI in Couples with Non-Obstructive Azoospermia?Journal of Urology, VOL. 195, NO. 3, (715-717), Online publication date: 1-Mar-2016.Niederberger C (2018) Re: Comparison of Microdissection Testicular Sperm Extraction, Conventional Testicular Sperm Extraction, and Testicular Sperm Aspiration for Nonobstructive Azoospermia: A Systematic Review and Meta-AnalysisJournal of Urology, VOL. 195, NO. 5, (1564-1566), Online publication date: 1-May-2016.Osterberg E, Laudano M, Ramasamy R, Sterling J, Robinson B, Goldstein M, Li P, Haka A and Schlegel P (2018) Identification of Spermatogenesis in a Rat Sertoli-Cell Only Model Using Raman Spectroscopy: A Feasibility StudyJournal of Urology, VOL. 192, NO. 2, (607-612), Online publication date: 1-Aug-2014. Volume 189Issue 2February 2013Page: 638-642 Advertisement Copyright & Permissions© 2013 by American Urological Association Education and Research, Inc.Keywordssperm retrievalnomogramstestisneural networks (computer)spermatozoaMetricsAuthor Information Ranjith Ramasamy More articles by this author Wendy O. Padilla More articles by this author E. Charles Osterberg More articles by this author Abhishek Srivastava More articles by this author Jennifer E. Reifsnyder More articles by this author Craig Niederberger Financial interest and/or other relationship with NexHand, Global Advanced Medical Care, American Society for Reproductive Medicine and American Urological Association. More articles by this author Peter N. Schlegel More articles by this author Expand All Advertisement PDF downloadLoading ..." @default.
- W2141666049 created "2016-06-24" @default.
- W2141666049 creator A5012746212 @default.
- W2141666049 creator A5025348800 @default.
- W2141666049 creator A5026214233 @default.
- W2141666049 creator A5073428580 @default.
- W2141666049 creator A5080819566 @default.
- W2141666049 creator A5083631951 @default.
- W2141666049 creator A5091048432 @default.
- W2141666049 date "2013-02-01" @default.
- W2141666049 modified "2023-10-14" @default.
- W2141666049 title "A Comparison of Models for Predicting Sperm Retrieval Before Microdissection Testicular Sperm Extraction in Men with Nonobstructive Azoospermia" @default.
- W2141666049 cites W1964961314 @default.
- W2141666049 cites W1993293940 @default.
- W2141666049 cites W1994365788 @default.
- W2141666049 cites W2000930092 @default.
- W2141666049 cites W2003504392 @default.
- W2141666049 cites W2016866718 @default.
- W2141666049 cites W2019044222 @default.
- W2141666049 cites W2038718531 @default.
- W2141666049 cites W2044661443 @default.
- W2141666049 cites W2054660932 @default.
- W2141666049 cites W2057656438 @default.
- W2141666049 cites W2062708203 @default.
- W2141666049 cites W2108170191 @default.
- W2141666049 cites W2119819627 @default.
- W2141666049 cites W2129925362 @default.
- W2141666049 cites W2133069770 @default.
- W2141666049 cites W2166792191 @default.
- W2141666049 cites W2170797410 @default.
- W2141666049 doi "https://doi.org/10.1016/j.juro.2012.09.038" @default.
- W2141666049 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23260551" @default.
- W2141666049 hasPublicationYear "2013" @default.
- W2141666049 type Work @default.
- W2141666049 sameAs 2141666049 @default.
- W2141666049 citedByCount "87" @default.
- W2141666049 countsByYear W21416660492013 @default.
- W2141666049 countsByYear W21416660492014 @default.
- W2141666049 countsByYear W21416660492015 @default.
- W2141666049 countsByYear W21416660492016 @default.
- W2141666049 countsByYear W21416660492017 @default.
- W2141666049 countsByYear W21416660492018 @default.
- W2141666049 countsByYear W21416660492019 @default.
- W2141666049 countsByYear W21416660492020 @default.
- W2141666049 countsByYear W21416660492021 @default.
- W2141666049 countsByYear W21416660492022 @default.
- W2141666049 countsByYear W21416660492023 @default.
- W2141666049 crossrefType "journal-article" @default.
- W2141666049 hasAuthorship W2141666049A5012746212 @default.
- W2141666049 hasAuthorship W2141666049A5025348800 @default.
- W2141666049 hasAuthorship W2141666049A5026214233 @default.
- W2141666049 hasAuthorship W2141666049A5073428580 @default.
- W2141666049 hasAuthorship W2141666049A5080819566 @default.
- W2141666049 hasAuthorship W2141666049A5083631951 @default.
- W2141666049 hasAuthorship W2141666049A5091048432 @default.
- W2141666049 hasConcept C104317684 @default.
- W2141666049 hasConcept C11242284 @default.
- W2141666049 hasConcept C16685009 @default.
- W2141666049 hasConcept C2777420699 @default.
- W2141666049 hasConcept C2777688143 @default.
- W2141666049 hasConcept C2779234561 @default.
- W2141666049 hasConcept C2781087480 @default.
- W2141666049 hasConcept C2910159267 @default.
- W2141666049 hasConcept C35035537 @default.
- W2141666049 hasConcept C54355233 @default.
- W2141666049 hasConcept C71924100 @default.
- W2141666049 hasConcept C86803240 @default.
- W2141666049 hasConceptScore W2141666049C104317684 @default.
- W2141666049 hasConceptScore W2141666049C11242284 @default.
- W2141666049 hasConceptScore W2141666049C16685009 @default.
- W2141666049 hasConceptScore W2141666049C2777420699 @default.
- W2141666049 hasConceptScore W2141666049C2777688143 @default.
- W2141666049 hasConceptScore W2141666049C2779234561 @default.
- W2141666049 hasConceptScore W2141666049C2781087480 @default.
- W2141666049 hasConceptScore W2141666049C2910159267 @default.
- W2141666049 hasConceptScore W2141666049C35035537 @default.
- W2141666049 hasConceptScore W2141666049C54355233 @default.
- W2141666049 hasConceptScore W2141666049C71924100 @default.
- W2141666049 hasConceptScore W2141666049C86803240 @default.
- W2141666049 hasIssue "2" @default.
- W2141666049 hasLocation W21416660491 @default.
- W2141666049 hasLocation W21416660492 @default.
- W2141666049 hasOpenAccess W2141666049 @default.
- W2141666049 hasPrimaryLocation W21416660491 @default.
- W2141666049 hasRelatedWork W1966376798 @default.
- W2141666049 hasRelatedWork W1989794563 @default.
- W2141666049 hasRelatedWork W2016563948 @default.
- W2141666049 hasRelatedWork W2036361931 @default.
- W2141666049 hasRelatedWork W2041857579 @default.
- W2141666049 hasRelatedWork W2126285261 @default.
- W2141666049 hasRelatedWork W2135320563 @default.
- W2141666049 hasRelatedWork W2380402725 @default.
- W2141666049 hasRelatedWork W4307429390 @default.
- W2141666049 hasRelatedWork W4313523763 @default.
- W2141666049 hasVolume "189" @default.
- W2141666049 isParatext "false" @default.
- W2141666049 isRetracted "false" @default.
- W2141666049 magId "2141666049" @default.