Matches in SemOpenAlex for { <https://semopenalex.org/work/W2141869180> ?p ?o ?g. }
Showing items 1 to 57 of
57
with 100 items per page.
- W2141869180 abstract "Informative Vector Machine (IVM) is an efficient fast sparse Gaussian process's (GP) method previously suggested for active learning. It greatly reduces the computational cost of GP classification and makes the GP learning close to real time. We apply IVM for man-made structure classification (a two class problem). Our work includes the investigation of the performance of IVM with varied active data points as well as the effects of different choices of GP kernels. Satisfactory results have been obtained, showing that the approach keeps full GP classification performance and yet is significantly faster (by virtue if using a subset of the whole training data points)." @default.
- W2141869180 created "2016-06-24" @default.
- W2141869180 creator A5031492664 @default.
- W2141869180 creator A5051938451 @default.
- W2141869180 date "2007-06-01" @default.
- W2141869180 modified "2023-09-23" @default.
- W2141869180 title "Fast Sparse Gaussian Processes Learning for Man-Made Structure Classification" @default.
- W2141869180 cites W1567512734 @default.
- W2141869180 cites W2030290736 @default.
- W2141869180 cites W2074701880 @default.
- W2141869180 cites W2128968235 @default.
- W2141869180 cites W2140681449 @default.
- W2141869180 doi "https://doi.org/10.1109/cvpr.2007.383441" @default.
- W2141869180 hasPublicationYear "2007" @default.
- W2141869180 type Work @default.
- W2141869180 sameAs 2141869180 @default.
- W2141869180 citedByCount "2" @default.
- W2141869180 countsByYear W21418691802012 @default.
- W2141869180 countsByYear W21418691802013 @default.
- W2141869180 crossrefType "proceedings-article" @default.
- W2141869180 hasAuthorship W2141869180A5031492664 @default.
- W2141869180 hasAuthorship W2141869180A5051938451 @default.
- W2141869180 hasBestOaLocation W21418691802 @default.
- W2141869180 hasConcept C119857082 @default.
- W2141869180 hasConcept C121332964 @default.
- W2141869180 hasConcept C153180895 @default.
- W2141869180 hasConcept C154945302 @default.
- W2141869180 hasConcept C163716315 @default.
- W2141869180 hasConcept C41008148 @default.
- W2141869180 hasConcept C61326573 @default.
- W2141869180 hasConcept C62520636 @default.
- W2141869180 hasConceptScore W2141869180C119857082 @default.
- W2141869180 hasConceptScore W2141869180C121332964 @default.
- W2141869180 hasConceptScore W2141869180C153180895 @default.
- W2141869180 hasConceptScore W2141869180C154945302 @default.
- W2141869180 hasConceptScore W2141869180C163716315 @default.
- W2141869180 hasConceptScore W2141869180C41008148 @default.
- W2141869180 hasConceptScore W2141869180C61326573 @default.
- W2141869180 hasConceptScore W2141869180C62520636 @default.
- W2141869180 hasLocation W21418691801 @default.
- W2141869180 hasLocation W21418691802 @default.
- W2141869180 hasOpenAccess W2141869180 @default.
- W2141869180 hasPrimaryLocation W21418691801 @default.
- W2141869180 hasRelatedWork W1866847359 @default.
- W2141869180 hasRelatedWork W2400147370 @default.
- W2141869180 hasRelatedWork W2433217581 @default.
- W2141869180 hasRelatedWork W2783038087 @default.
- W2141869180 hasRelatedWork W2891787551 @default.
- W2141869180 hasRelatedWork W2961085424 @default.
- W2141869180 hasRelatedWork W4286629047 @default.
- W2141869180 hasRelatedWork W4306321456 @default.
- W2141869180 hasRelatedWork W4306674287 @default.
- W2141869180 hasRelatedWork W4224009465 @default.
- W2141869180 isParatext "false" @default.
- W2141869180 isRetracted "false" @default.
- W2141869180 magId "2141869180" @default.
- W2141869180 workType "article" @default.