Matches in SemOpenAlex for { <https://semopenalex.org/work/W2142227570> ?p ?o ?g. }
- W2142227570 endingPage "146" @default.
- W2142227570 startingPage "143" @default.
- W2142227570 abstract "Alzheimer's & DementiaVolume 5, Issue 2 p. 143-146 Perspective Commentary on “A roadmap for the prevention of dementia II. Leon Thal Symposium 2008.” Rationale and recommendations for first evaluating anti-Alzheimer's disease medications in acute brain injury patients James W. Simpkins, Corresponding Author James W. Simpkins [email protected] 817-735-0498 | Fax: 817-735-2091 Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX, USA Corresponding author. Tel.: 817-735-0498; Fax: 817-735-2091. E-mail address: [email protected]Search for more papers by this authorJoshua W. Gatson, Joshua W. Gatson Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USASearch for more papers by this authorJane G. Wigginton, Jane G. Wigginton Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USASearch for more papers by this author James W. Simpkins, Corresponding Author James W. Simpkins [email protected] 817-735-0498 | Fax: 817-735-2091 Department of Pharmacology and Neuroscience, Institute for Aging and Alzheimer's Disease Research, University of North Texas Health Science Center, Fort Worth, TX, USA Corresponding author. Tel.: 817-735-0498; Fax: 817-735-2091. E-mail address: [email protected]Search for more papers by this authorJoshua W. Gatson, Joshua W. Gatson Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USASearch for more papers by this authorJane G. Wigginton, Jane G. Wigginton Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USASearch for more papers by this author First published: 01 March 2009 https://doi.org/10.1016/j.jalz.2009.01.013Citations: 4Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL References [1]P. Aisen, M. Albert, J.C.S. Breitner, N. Buckholtz, J.P. Corey-Bloom, J.L. Cummings, et al. Preventing dementia: following in Leon Thal's footsteps. Alzheimers Dement. 4: 2008; 156– 163 [2]J. Szczygielski, A. Mautes, W.I. Steudel, P. Falkai, T.A. Bayer, O. Wirths. Traumatic brain injury: cause or risk of Alzheimer's disease? A review of experimental studies. J Neural Transm. 112: 2005; 1547– 1564 [3]S. Fleminger, D.L. Oliver, S. Lovestone, S. Rabe-Hesketh, A. Giora. Head injury as a risk factor for Alzheimer's disease: the evidence 10 years on; a partial replication. J Neurol Neurosurg Psychiatry. 74: 2003; 857– 862 [4]G.W. Roberts, S.M. Gentleman, A. Lynch, D.I. Graham. Beta A4 amyloid protein deposition in brain after head trauma. Lancet. 338: 1991; 1422– 1423 [5]G.W. Roberts, S.M. Gentleman, A. Lynch, L. Murray, M. Landon, D.I. Graham. Beta amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer's disease. J Neurol Neurosurg Psychiatry. 57: 1994; 419– 425 [6]D.H. Smith, X.H. Chen, A. Iwata, D.I. Graham. Amyloid beta accumulation in axons after traumatic brain injury in humans. J Neurosurg. 98: 2003; 1072– 1077 [7]K.J. McKenzie, D.R. McLellan, S.M. Gentleman, W.L. Maxwell, T.A. Gennarelli, D.I. Graham. Is beta-APP a marker of axonal damage in short-surviving head injury? Acta Neuropathol (Berl). 92: 1996; 608– 613 [8]M.D. Ikonomovic, K. Uryu, E.E. Abrahamson, J.R. Ciallella, J.Q. Trojanowski, V.M. Lee, et al. Alzheimer's pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol. 190: 2004; 192– 203 [9]A. Lewen, G.L. Li, Y. Olsson, L. Hillered. Changes in microtubule-associated protein 2 and amyloid precursor protein immunoreactivity following traumatic brain injury in rat: influence of MK-801 treatment. Brain Res. 719: 1996; 161– 171 [10]N. Otsuka, M. Tomonaga, K. Ikeda. Rapid appearance of beta-amyloid precursor protein immunoreactivity in damaged axons and reactive glial cells in rat brain following needle stab injury. Brain Res. 568: 1991; 335– 338 [11]J.E. Pierce, J.Q. Trojanowski, D.I. Graham, D.H. Smith, T.K. McIntosh. Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and beta-amyloid peptide after experimental brain injury in the rat. J Neurosci. 16: 1996; 1083– 1090 [12]B.C. Albensi, C. Igoechi, D. Janigro, E. Ilkanich. Why do many NMDA antagonists fail, while others are safe and effective at blocking excitotoxicity associated with dementia and acute injury? Am J Alzheimers Dis Other Dement. 19: 2004; 269– 274 [13]X.H. Chen, R. Siman, A. Iwata, D.F. Meaney, J.Q. Trojanowski, D.H. Smith. Long-term accumulation of amyloid-beta, beta-secretase, presenilin-1, and caspase-3 in damaged axons following brain trauma. Am J Pathol. 165: 2004; 357– 371 [14]A. Hamberger, Y.L. Huang, H. Zhu, et al. Redistribution of neurofilaments and accumulation of beta-amyloid protein after brain injury by rotational acceleration of the head. J Neurotrauma. 20: 2003; 169– 178 [15]D.L. Brody, D.M. Holtzman. Morris water maze search strategy analysis in PDAPP mice before and after experimental traumatic brain injury. Exp Neurol. 197: 2006; 330– 340 [16]R.E. Hartman, H. Laurer, L. Longhi, K.R. Bales, S.M. Paul, T.K. McIntosh, et al. Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer's disease. J Neurosci. 22: 2002; 10083– 10087 [17]H.L. Laurer, F.M. Bareyre, V.M. Lee, J.Q. Trojanowski, L. Longhi, R. Hoover, et al. Mild head injury increasing the brain's vulnerability to a second concussive impact. J Neurosurg. 95: 2001; 859– 870 [18]Y. Nakagawa, M. Nakamura, T.K. McIntosh, A. Rodriguez, J.A. Berlin, D.H. Smith, et al. Traumatic brain injury in young, amyloid-beta peptide overexpressing transgenic mice induces marked ipsilateral hippocampal atrophy and diminished Abeta deposition during aging. J Comp Neurol. 411: 1999; 390– 398 [19]Y. Nakagawa, L. Reed, M. Nakamura, T.K. McIntosh, D.H. Smith, K.E. Saatman, et al. Brain trauma in aged transgenic mice induces regression of established Abeta deposits. Exp Neurol. 163: 2000; 244– 252 [20]D.H. Smith, M. Nakamura, T.K. McIntosh, J.Q. Trojanowski, L. Longhi, R. Hoover, et al. Brain trauma induces massive hippocampal neuron death linked to a surge in beta-amyloid levels in mice overexpressing mutant amyloid precursor protein. Am J Pathol. 153: 1998; 1005– 1010 [21]I. Blasko, R. Beer, M. Bigl, J. Apelt, G. Franz, D. Rudzki, et al. Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer's disease beta-secretase (BACE-1). J Neural Transm. 111: 2004; 523– 536 [22]S.P. Gabbita, S.W. Scheff, R.M. Menard, K. Roberts, I. Fugaccia, F.P. Zemlan. Cleaved-tau: a biomarker of neuronal damage after traumatic brain injury. J Neurotrauma. 22: 2005; 83– 94 [23]L. Genis, Y. Chen, E. Shohami, D.M. Michaelson. Tau hyperphosphorylation in apolipoprotein E-deficient and control mice after closed head injury. J Neurosci Res. 60: 2000; 559– 564 [24]E.A. Irving, J. Nicoll, D.I. Graham, D. Dewar. Increased tau immunoreactivity in oligodendrocytes following human stroke and head injury. Neurosci Lett. 213: 1996; 189– 192 [25]T.K. Tatemichi, M.A. Foulkes, J.P. Mohr, J.R. Hewitt, D.B. Hier, T.R. Price, et al. Dementia in stroke survivors in the Stroke Data Bank cohort. Prevalence, incidence, risk factors, and computed tomographic findings. Stroke. 21: 1990; 858– 866 [26]N.M. Bornstein, A.Y. Gur, T.A. Treves, I. Reider-Groswasser, B.D. Aronovich, S.S. Klimovitzky, et al. Do silent brain infarctions predict the development of dementia after first ischemic stroke? Stroke. 27: 1996; 904– 905 [27]H. Henon, I. Durieu, D. Guerouaou, F. Lebert, F. Pasquier, D. Leys. Poststroke dementia: incidence and relationship to prestroke cognitive decline. Neurology. 57: 2001; 1216– 1222 [28]M. Altieri, V. Di Piero, M. Pasquini, M. Gasparini, N. Vanacore, E. Vicenzini, et al. Delayed poststroke dementia: a 4-year follow-up study. Neurology. 62: 2004; 2193– 2197 [29]E. Kokmen, J.P. Whisnant, W.M. O'Fallon, C.P. Chu, C.M. Beard. Dementia after ischemic stroke: a population-based study in Rochester, Minnesota (1960–1984). Neurology. 46: 1996; 154– 159 [30]D.W. Desmond, J.T. Moroney, M. Sano, Y. Stern. Incidence of dementia after ischemic stroke: results of a longitudinal study. Stroke. 33: 2002; 2254– 2260 [31]M. Samuelsson, B. Soderfeldt, G.B. Olsson. Functional outcome in patients with lacunar infarction. Stroke. 27: 1996; 842– 846 [32]C. Loeb, C. Gandolfo, R. Croce, M. Conti. Dementia associated with lacunar infarction. Stroke. 23: 1992; 1225– 1229 [33]D. Dewar, D.I. Graham, G.M. Teasdale, J. McCulloch. Alz-50 and ubiquitin immunoreactivity is induced by permanent focal cerebral ischaemia in the cat. Acta Neuropathol (Berl). 86: 1993; 623– 629 [34]Y. Wen, S. Yang, R. Liu, J.W. Simpkins. Transient cerebral ischemia induces site-specific hyperphosphorylation of tau protein. Brain Res. 1022: 2004; 30– 38 [35]K. Ikeda, H. Akiyama, T. Arai, H. Kondo, C. Haga, K. Tsuchiya, et al. Neurons containing Alz-50-immunoreactive granules around the cerebral infarction: evidence for the lysosomal degradation of altered tau in human brain? Neurosc Lett. 284: 2000; 187– 189 [36]Y. Wen, S.H. Yang, R. Liu, A.M. Brun-Zinkernagel, P. Koulen, J.W. Simpkins. Transient cerebral ischemia induces aberrant neuronal cell cycle reentry and Alzheimer's disease-like tauopathy in female rats. J Biol Chem. 279: 2004; 22684– 22692 [37]Y. Wen, S.H. Yang, R. Liu, S. Sarkar, J.W. Simpkins. Cell-cycle regulators are involved in transient cerebral ischemia induced neuronal apoptosis in female rats. FEBS Lett. 579: 2005; 4591– 4599 [38]Y. Wen, S.H. Yang, R. Liu, E. Perez, A.M. Brun-Zinkernagel, P. Koulen, et al. Cdk5 is involved in NFT-like tauopathy induced by transient cerebral ischemia in female rats. Biochim Biophys Acta. 1772: 2007; 473– 483 [39]Y. Wen, O. Onyewuchi, S.H. Yang, R. Liu, J.W. Simpkins. Increased β-secretase activity and expression in rats following transient cerebral ischemia. Brain Res. 1009: 2004; 1– 8 [40]G. Tesco, Y.H. Koh, E. Kang, A. Cameron, S. Das, M. Sena-Esteves, et al. Depletion of GGA3 stabilizes BACE and enhances β-secretase activity. Neuron. 54: 2007; 721– 737 [41]S. Kesavapany, B.S. Li, N. Amin, Y.L. Zheng, P. Grant, H.C. Pant. Neuronal cyclin-dependent kinase 5: role in nervous system function and its specific inhibition by the Cdk5 inhibitory peptide. Biochim Biophys Acta. 1697: 2004; 143– 153 [42]N. Mitsios, R. Pennucci, J. Krupinski, C. Sanfeliu, J. Gaffney, P. Kumar, et al. Expression of cyclin-dependent kinase 5 mRNA and protein in the human brain following acute ischemic stroke. Brain Pathol. 17: 2007; 11– 23 [43]J.C. Cruz, L.H. Tsai. Cdk5 deregulation in the pathogenesis of Alzheimer's disease. Trends Mol Med. 10: 2004; 452– 458 [44]E.A. Monaco III, M.L. Vallano. Role of protein kinases in neurodegenerative disease: cyclin-dependent kinases in Alzheimer's disease. Front Biosci. 10: 2005; 143– 159 [45]Y. Wen, W.H. Yu, B. Maloney, J. Bailey, J. Ma, I. Marié, et al. Transcriptional regulation of beta-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron. 57: 2008; 680– 690 [46]R. Vassar. Caspase-3 cleavage of GGA3 stabilizes BACE: implications for Alzheimer's disease. Neuron. 54: 2007; 671– 673 Citing Literature Volume5, Issue2March 2009Pages 143-146 ReferencesRelatedInformation" @default.
- W2142227570 created "2016-06-24" @default.
- W2142227570 creator A5007418308 @default.
- W2142227570 creator A5024146315 @default.
- W2142227570 creator A5048605169 @default.
- W2142227570 date "2009-03-01" @default.
- W2142227570 modified "2023-09-27" @default.
- W2142227570 title "Commentary on “A roadmap for the prevention of dementia II. Leon Thal Symposium 2008.” Rationale and recommendations for first evaluating anti-Alzheimer's disease medications in acute brain injury patients" @default.
- W2142227570 cites W138237136 @default.
- W2142227570 cites W1684804860 @default.
- W2142227570 cites W1879457624 @default.
- W2142227570 cites W1965918817 @default.
- W2142227570 cites W1966611928 @default.
- W2142227570 cites W1969147420 @default.
- W2142227570 cites W1975656204 @default.
- W2142227570 cites W1978043286 @default.
- W2142227570 cites W1979393729 @default.
- W2142227570 cites W1983207453 @default.
- W2142227570 cites W1984669814 @default.
- W2142227570 cites W1984870586 @default.
- W2142227570 cites W1985722784 @default.
- W2142227570 cites W2001402586 @default.
- W2142227570 cites W2004117222 @default.
- W2142227570 cites W2008441891 @default.
- W2142227570 cites W2011949052 @default.
- W2142227570 cites W2015699299 @default.
- W2142227570 cites W2020347380 @default.
- W2142227570 cites W2020539883 @default.
- W2142227570 cites W2023224182 @default.
- W2142227570 cites W2028535633 @default.
- W2142227570 cites W2029804279 @default.
- W2142227570 cites W2030938312 @default.
- W2142227570 cites W2031139440 @default.
- W2142227570 cites W2036945415 @default.
- W2142227570 cites W2041802741 @default.
- W2142227570 cites W2047198245 @default.
- W2142227570 cites W2049676706 @default.
- W2142227570 cites W2063646837 @default.
- W2142227570 cites W2065904280 @default.
- W2142227570 cites W2068336600 @default.
- W2142227570 cites W2068529582 @default.
- W2142227570 cites W2073009405 @default.
- W2142227570 cites W2075114979 @default.
- W2142227570 cites W2078300579 @default.
- W2142227570 cites W2079716755 @default.
- W2142227570 cites W2085478100 @default.
- W2142227570 cites W2092154363 @default.
- W2142227570 cites W2130824857 @default.
- W2142227570 cites W2131209205 @default.
- W2142227570 cites W2154619246 @default.
- W2142227570 cites W2158713023 @default.
- W2142227570 cites W2164735970 @default.
- W2142227570 cites W4234620764 @default.
- W2142227570 doi "https://doi.org/10.1016/j.jalz.2009.01.013" @default.
- W2142227570 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5008237" @default.
- W2142227570 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19328446" @default.
- W2142227570 hasPublicationYear "2009" @default.
- W2142227570 type Work @default.
- W2142227570 sameAs 2142227570 @default.
- W2142227570 citedByCount "5" @default.
- W2142227570 countsByYear W21422275702012 @default.
- W2142227570 countsByYear W21422275702018 @default.
- W2142227570 countsByYear W21422275702021 @default.
- W2142227570 crossrefType "journal-article" @default.
- W2142227570 hasAuthorship W2142227570A5007418308 @default.
- W2142227570 hasAuthorship W2142227570A5024146315 @default.
- W2142227570 hasAuthorship W2142227570A5048605169 @default.
- W2142227570 hasBestOaLocation W21422275702 @default.
- W2142227570 hasConcept C118552586 @default.
- W2142227570 hasConcept C126322002 @default.
- W2142227570 hasConcept C1862650 @default.
- W2142227570 hasConcept C2779134260 @default.
- W2142227570 hasConcept C2779483572 @default.
- W2142227570 hasConcept C71924100 @default.
- W2142227570 hasConcept C74909509 @default.
- W2142227570 hasConceptScore W2142227570C118552586 @default.
- W2142227570 hasConceptScore W2142227570C126322002 @default.
- W2142227570 hasConceptScore W2142227570C1862650 @default.
- W2142227570 hasConceptScore W2142227570C2779134260 @default.
- W2142227570 hasConceptScore W2142227570C2779483572 @default.
- W2142227570 hasConceptScore W2142227570C71924100 @default.
- W2142227570 hasConceptScore W2142227570C74909509 @default.
- W2142227570 hasIssue "2" @default.
- W2142227570 hasLocation W21422275701 @default.
- W2142227570 hasLocation W21422275702 @default.
- W2142227570 hasLocation W21422275703 @default.
- W2142227570 hasLocation W21422275704 @default.
- W2142227570 hasOpenAccess W2142227570 @default.
- W2142227570 hasPrimaryLocation W21422275701 @default.
- W2142227570 hasRelatedWork W1501867320 @default.
- W2142227570 hasRelatedWork W2059242980 @default.
- W2142227570 hasRelatedWork W2413479035 @default.
- W2142227570 hasRelatedWork W2990530825 @default.
- W2142227570 hasRelatedWork W313460363 @default.
- W2142227570 hasRelatedWork W4235339219 @default.
- W2142227570 hasRelatedWork W4236243970 @default.
- W2142227570 hasRelatedWork W4249661632 @default.
- W2142227570 hasRelatedWork W4255249625 @default.