Matches in SemOpenAlex for { <https://semopenalex.org/work/W2142316078> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2142316078 abstract "Abstract One of the costliest parts of field-scale reservoir studies is log analysis. A recent GRI project required a detailed study of a field with hundreds of wells. As part of this study all the well logs were to be analyzed by an engineer in order to identify net pay, porosity, and saturation. It soon became apparent that a considerable amount of time must be devoted to well log analysis in order to obtain consistent and high quality reservoir characteristics throughout the field. This was mainly due to the fact that logs for several wells were missing and many wells did not have the suite of logs that were necessary for analysis. This paper presents a novel approach to reduce the cost of well log analysis while maintaining the quality of the analysis. The cost reduction is achieved by analyzing only a group of the wells in the field. Using the detailed analysis of this group of the well logs by an expert engineer, an intelligent software tool is built to learn and reproduce the analyzing capabilities of the engineer on the remaining wells. This approach provides a means to increase the efficiency of the engineering team. It can decrease the time needed to analyze a large number of well logs while considerably reducing the project cost to the operator. It will provide means to attain well log analysis for wells that do not have all the necessary logs needed for the analysis. This is achieved by generating virtual wireline logs for these wells. Virtual intelligence techniques are used in construction of the intelligent software tool presented in this study." @default.
- W2142316078 created "2016-06-24" @default.
- W2142316078 creator A5033644458 @default.
- W2142316078 creator A5056993225 @default.
- W2142316078 creator A5070760354 @default.
- W2142316078 creator A5087965085 @default.
- W2142316078 date "1999-10-21" @default.
- W2142316078 modified "2023-09-23" @default.
- W2142316078 title "Reducing the Cost of Field-Scale Log Analysis Using Virtual Intelligence Techniques" @default.
- W2142316078 cites W1986517446 @default.
- W2142316078 cites W2095401430 @default.
- W2142316078 doi "https://doi.org/10.2118/57454-ms" @default.
- W2142316078 hasPublicationYear "1999" @default.
- W2142316078 type Work @default.
- W2142316078 sameAs 2142316078 @default.
- W2142316078 citedByCount "11" @default.
- W2142316078 countsByYear W21423160782012 @default.
- W2142316078 countsByYear W21423160782020 @default.
- W2142316078 crossrefType "proceedings-article" @default.
- W2142316078 hasAuthorship W2142316078A5033644458 @default.
- W2142316078 hasAuthorship W2142316078A5056993225 @default.
- W2142316078 hasAuthorship W2142316078A5070760354 @default.
- W2142316078 hasAuthorship W2142316078A5087965085 @default.
- W2142316078 hasConcept C111472728 @default.
- W2142316078 hasConcept C121332964 @default.
- W2142316078 hasConcept C124101348 @default.
- W2142316078 hasConcept C127413603 @default.
- W2142316078 hasConcept C138885662 @default.
- W2142316078 hasConcept C166957645 @default.
- W2142316078 hasConcept C199360897 @default.
- W2142316078 hasConcept C202444582 @default.
- W2142316078 hasConcept C2776951270 @default.
- W2142316078 hasConcept C2777904410 @default.
- W2142316078 hasConcept C2778755073 @default.
- W2142316078 hasConcept C2779530757 @default.
- W2142316078 hasConcept C33923547 @default.
- W2142316078 hasConcept C35817400 @default.
- W2142316078 hasConcept C41008148 @default.
- W2142316078 hasConcept C555944384 @default.
- W2142316078 hasConcept C62520636 @default.
- W2142316078 hasConcept C76155785 @default.
- W2142316078 hasConcept C78762247 @default.
- W2142316078 hasConcept C79581498 @default.
- W2142316078 hasConcept C95457728 @default.
- W2142316078 hasConcept C9652623 @default.
- W2142316078 hasConceptScore W2142316078C111472728 @default.
- W2142316078 hasConceptScore W2142316078C121332964 @default.
- W2142316078 hasConceptScore W2142316078C124101348 @default.
- W2142316078 hasConceptScore W2142316078C127413603 @default.
- W2142316078 hasConceptScore W2142316078C138885662 @default.
- W2142316078 hasConceptScore W2142316078C166957645 @default.
- W2142316078 hasConceptScore W2142316078C199360897 @default.
- W2142316078 hasConceptScore W2142316078C202444582 @default.
- W2142316078 hasConceptScore W2142316078C2776951270 @default.
- W2142316078 hasConceptScore W2142316078C2777904410 @default.
- W2142316078 hasConceptScore W2142316078C2778755073 @default.
- W2142316078 hasConceptScore W2142316078C2779530757 @default.
- W2142316078 hasConceptScore W2142316078C33923547 @default.
- W2142316078 hasConceptScore W2142316078C35817400 @default.
- W2142316078 hasConceptScore W2142316078C41008148 @default.
- W2142316078 hasConceptScore W2142316078C555944384 @default.
- W2142316078 hasConceptScore W2142316078C62520636 @default.
- W2142316078 hasConceptScore W2142316078C76155785 @default.
- W2142316078 hasConceptScore W2142316078C78762247 @default.
- W2142316078 hasConceptScore W2142316078C79581498 @default.
- W2142316078 hasConceptScore W2142316078C95457728 @default.
- W2142316078 hasConceptScore W2142316078C9652623 @default.
- W2142316078 hasLocation W21423160781 @default.
- W2142316078 hasOpenAccess W2142316078 @default.
- W2142316078 hasPrimaryLocation W21423160781 @default.
- W2142316078 hasRelatedWork W1524377747 @default.
- W2142316078 hasRelatedWork W1975498718 @default.
- W2142316078 hasRelatedWork W1992133415 @default.
- W2142316078 hasRelatedWork W2002724804 @default.
- W2142316078 hasRelatedWork W2057087473 @default.
- W2142316078 hasRelatedWork W2183628904 @default.
- W2142316078 hasRelatedWork W2363501692 @default.
- W2142316078 hasRelatedWork W2392714184 @default.
- W2142316078 hasRelatedWork W2465616004 @default.
- W2142316078 hasRelatedWork W3084863322 @default.
- W2142316078 isParatext "false" @default.
- W2142316078 isRetracted "false" @default.
- W2142316078 magId "2142316078" @default.
- W2142316078 workType "article" @default.