Matches in SemOpenAlex for { <https://semopenalex.org/work/W2142350697> ?p ?o ?g. }
- W2142350697 abstract "This paper investigates distributed cooperative learning algorithms for data processing in a network setting. Specifically, the extreme learning machine (ELM) is introduced to train a set of data distributed across several components, and each component runs a program on a subset of the entire data. In this scheme, there is no requirement for a fusion center in the network due to e.g., practical limitations, security, or privacy reasons. We first reformulate the centralized ELM training problem into a separable form among nodes with consensus constraints. Then, we solve the equivalent problem using distributed optimization tools. A new distributed cooperative learning algorithm based on ELM, called DC-ELM, is proposed. The architecture of this algorithm differs from that of some existing parallel/distributed ELMs based on MapReduce or cloud computing. We also present an online version of the proposed algorithm that can learn data sequentially in a one-by-one or chunk-by-chunk mode. The novel algorithm is well suited for potential applications such as artificial intelligence, computational biology, finance, wireless sensor networks, and so on, involving datasets that are often extremely large, high-dimensional and located on distributed data sources. We show simulation results on both synthetic and real-world data sets." @default.
- W2142350697 created "2016-06-24" @default.
- W2142350697 creator A5005626770 @default.
- W2142350697 creator A5084404694 @default.
- W2142350697 date "2015-04-04" @default.
- W2142350697 modified "2023-10-16" @default.
- W2142350697 title "ELM-Based Distributed Cooperative Learning Over Networks" @default.
- W2142350697 cites W1511476864 @default.
- W2142350697 cites W1547358136 @default.
- W2142350697 cites W1578099820 @default.
- W2142350697 cites W1603765807 @default.
- W2142350697 cites W1767300630 @default.
- W2142350697 cites W1965620683 @default.
- W2142350697 cites W1973754217 @default.
- W2142350697 cites W1981745143 @default.
- W2142350697 cites W1985770565 @default.
- W2142350697 cites W1988719066 @default.
- W2142350697 cites W1988795359 @default.
- W2142350697 cites W1989054487 @default.
- W2142350697 cites W2003208028 @default.
- W2142350697 cites W2008998164 @default.
- W2142350697 cites W2009537245 @default.
- W2142350697 cites W2025917402 @default.
- W2142350697 cites W2026131661 @default.
- W2142350697 cites W2029080014 @default.
- W2142350697 cites W2035026907 @default.
- W2142350697 cites W2044212084 @default.
- W2142350697 cites W2052842899 @default.
- W2142350697 cites W2066332749 @default.
- W2142350697 cites W2085752001 @default.
- W2142350697 cites W2093356327 @default.
- W2142350697 cites W2101876299 @default.
- W2142350697 cites W2107396783 @default.
- W2142350697 cites W2111072639 @default.
- W2142350697 cites W2112796928 @default.
- W2142350697 cites W2113244375 @default.
- W2142350697 cites W2114791779 @default.
- W2142350697 cites W2117412539 @default.
- W2142350697 cites W2121971770 @default.
- W2142350697 cites W2130263842 @default.
- W2142350697 cites W2134130436 @default.
- W2142350697 cites W2134603844 @default.
- W2142350697 cites W2141788746 @default.
- W2142350697 cites W2142184324 @default.
- W2142350697 cites W2142848542 @default.
- W2142350697 cites W2145706050 @default.
- W2142350697 cites W2147063178 @default.
- W2142350697 cites W2154834860 @default.
- W2142350697 cites W2160643434 @default.
- W2142350697 cites W2160785244 @default.
- W2142350697 cites W2164278908 @default.
- W2142350697 cites W2166185161 @default.
- W2142350697 cites W2562862721 @default.
- W2142350697 cites W2571423792 @default.
- W2142350697 cites W2610857016 @default.
- W2142350697 cites W2951113132 @default.
- W2142350697 cites W330173850 @default.
- W2142350697 cites W22572007 @default.
- W2142350697 cites W2585562629 @default.
- W2142350697 doi "https://doi.org/10.48550/arxiv.1504.00981" @default.
- W2142350697 hasPublicationYear "2015" @default.
- W2142350697 type Work @default.
- W2142350697 sameAs 2142350697 @default.
- W2142350697 citedByCount "0" @default.
- W2142350697 crossrefType "posted-content" @default.
- W2142350697 hasAuthorship W2142350697A5005626770 @default.
- W2142350697 hasAuthorship W2142350697A5084404694 @default.
- W2142350697 hasBestOaLocation W21423506971 @default.
- W2142350697 hasConcept C111919701 @default.
- W2142350697 hasConcept C120314980 @default.
- W2142350697 hasConcept C121332964 @default.
- W2142350697 hasConcept C130120984 @default.
- W2142350697 hasConcept C134306372 @default.
- W2142350697 hasConcept C149946192 @default.
- W2142350697 hasConcept C154945302 @default.
- W2142350697 hasConcept C15744967 @default.
- W2142350697 hasConcept C168167062 @default.
- W2142350697 hasConcept C177264268 @default.
- W2142350697 hasConcept C19417346 @default.
- W2142350697 hasConcept C199360897 @default.
- W2142350697 hasConcept C24590314 @default.
- W2142350697 hasConcept C2779582901 @default.
- W2142350697 hasConcept C2780150128 @default.
- W2142350697 hasConcept C2781234732 @default.
- W2142350697 hasConcept C31258907 @default.
- W2142350697 hasConcept C33923547 @default.
- W2142350697 hasConcept C41008148 @default.
- W2142350697 hasConcept C50644808 @default.
- W2142350697 hasConcept C555944384 @default.
- W2142350697 hasConcept C70061542 @default.
- W2142350697 hasConcept C76155785 @default.
- W2142350697 hasConcept C77618280 @default.
- W2142350697 hasConcept C79974875 @default.
- W2142350697 hasConcept C97355855 @default.
- W2142350697 hasConceptScore W2142350697C111919701 @default.
- W2142350697 hasConceptScore W2142350697C120314980 @default.
- W2142350697 hasConceptScore W2142350697C121332964 @default.
- W2142350697 hasConceptScore W2142350697C130120984 @default.
- W2142350697 hasConceptScore W2142350697C134306372 @default.
- W2142350697 hasConceptScore W2142350697C149946192 @default.