Matches in SemOpenAlex for { <https://semopenalex.org/work/W2142525363> ?p ?o ?g. }
- W2142525363 abstract "This dissertation is a simulation study of factors and techniques involved in designing hyperlink recommender systems that recommend to users, web pages that past users with similar navigation behaviors found interesting. The methodology involves identification of pertinent factors or techniques, and for each one, addresses the following questions: (a) room for improvement; (b) better approach, if any; and (c) performance characteristics of the technique in environments that hyperlink recommender systems operate in. The following four problems are addressed: Web page classification. A new metric (PageRank × Inverse Links-to-Word count ratio) is proposed for classifying web pages as content or navigation, to help in the discovery of user navigation behaviors from web user access logs. Results of a small user study suggest that this metric leads to desirable results. Data mining. A new apriori algorithm for mining association rules from large databases is proposed. The new algorithm addresses the problem of scaling of the classical apriori algorithm by eliminating an expensive join step, and applying the apriori property to every row of the database. In this study, association rules show the correlation relationships between user navigation behaviors and web pages they find interesting. The new algorithm has better space complexity than the classical one, and better time efficiency under some conditions and comparable time efficiency under other conditions. Prediction models for user interests. We demonstrate that association rules that show the correlation relationships between user navigation patterns and web pages they find interesting can be transformed into collaborative filtering data. We investigate collaborative filtering prediction models based on two approaches for computating prediction scores: using simple averages and weighted averages. Our findings suggest that the weighted averages scheme more accurately computes predictions of user interests than the simple averages scheme does. Clustering. Clustering techniques are frequently applied in the design of personalization systems. We studied the performance of the CLARANS clustering algorithm in high dimensional space in relation to the PAM and CLARA clustering algorithms. While CLARA had the best time performance, CLARANS resulted in clusters with the lowest intra-cluster dissimilarities, and so was most effective in this regard." @default.
- W2142525363 created "2016-06-24" @default.
- W2142525363 creator A5048404355 @default.
- W2142525363 creator A5074851605 @default.
- W2142525363 date "2005-01-01" @default.
- W2142525363 modified "2023-09-23" @default.
- W2142525363 title "A collaborative filtering approach to predict web pages of interest from navigation patterns of past users within an academic website" @default.
- W2142525363 cites W108157922 @default.
- W2142525363 cites W138667458 @default.
- W2142525363 cites W1484413656 @default.
- W2142525363 cites W1493526108 @default.
- W2142525363 cites W1502996661 @default.
- W2142525363 cites W1510348757 @default.
- W2142525363 cites W1525481129 @default.
- W2142525363 cites W1527499847 @default.
- W2142525363 cites W1528811433 @default.
- W2142525363 cites W153250912 @default.
- W2142525363 cites W1545692749 @default.
- W2142525363 cites W1570159982 @default.
- W2142525363 cites W1570542661 @default.
- W2142525363 cites W1571900722 @default.
- W2142525363 cites W1575476631 @default.
- W2142525363 cites W1582340466 @default.
- W2142525363 cites W1587718046 @default.
- W2142525363 cites W1593196131 @default.
- W2142525363 cites W1629473008 @default.
- W2142525363 cites W1652319903 @default.
- W2142525363 cites W1678393259 @default.
- W2142525363 cites W1791808111 @default.
- W2142525363 cites W1802760973 @default.
- W2142525363 cites W1853953842 @default.
- W2142525363 cites W1881168306 @default.
- W2142525363 cites W1927533402 @default.
- W2142525363 cites W1928061009 @default.
- W2142525363 cites W1956559956 @default.
- W2142525363 cites W1968397045 @default.
- W2142525363 cites W1982896842 @default.
- W2142525363 cites W1984195611 @default.
- W2142525363 cites W1987338877 @default.
- W2142525363 cites W1996283866 @default.
- W2142525363 cites W1996869586 @default.
- W2142525363 cites W1997136459 @default.
- W2142525363 cites W1999047234 @default.
- W2142525363 cites W2006154742 @default.
- W2142525363 cites W2006551346 @default.
- W2142525363 cites W2015416382 @default.
- W2142525363 cites W20184837 @default.
- W2142525363 cites W2020416126 @default.
- W2142525363 cites W2028036481 @default.
- W2142525363 cites W2031636842 @default.
- W2142525363 cites W2037498077 @default.
- W2142525363 cites W2037717074 @default.
- W2142525363 cites W2042281163 @default.
- W2142525363 cites W2043403353 @default.
- W2142525363 cites W2045282674 @default.
- W2142525363 cites W2049335625 @default.
- W2142525363 cites W2049727806 @default.
- W2142525363 cites W2056029990 @default.
- W2142525363 cites W2057024866 @default.
- W2142525363 cites W2061936223 @default.
- W2142525363 cites W2063789864 @default.
- W2142525363 cites W2070110775 @default.
- W2142525363 cites W2072340843 @default.
- W2142525363 cites W2074680184 @default.
- W2142525363 cites W2078663894 @default.
- W2142525363 cites W2080950999 @default.
- W2142525363 cites W2084213692 @default.
- W2142525363 cites W2086863338 @default.
- W2142525363 cites W2095012170 @default.
- W2142525363 cites W2095897464 @default.
- W2142525363 cites W2098162425 @default.
- W2142525363 cites W2101004782 @default.
- W2142525363 cites W2106365165 @default.
- W2142525363 cites W2109208918 @default.
- W2142525363 cites W2112929667 @default.
- W2142525363 cites W2113609601 @default.
- W2142525363 cites W2118636093 @default.
- W2142525363 cites W2122625718 @default.
- W2142525363 cites W2124756613 @default.
- W2142525363 cites W2126626732 @default.
- W2142525363 cites W2126751256 @default.
- W2142525363 cites W2128157527 @default.
- W2142525363 cites W2129538325 @default.
- W2142525363 cites W2131180258 @default.
- W2142525363 cites W2131687179 @default.
- W2142525363 cites W2135075522 @default.
- W2142525363 cites W2137728971 @default.
- W2142525363 cites W2140190241 @default.
- W2142525363 cites W2141585940 @default.
- W2142525363 cites W2142094977 @default.
- W2142525363 cites W2144169452 @default.
- W2142525363 cites W2146069026 @default.
- W2142525363 cites W2147152072 @default.
- W2142525363 cites W2147654806 @default.
- W2142525363 cites W2147859400 @default.
- W2142525363 cites W2149483835 @default.
- W2142525363 cites W2157973827 @default.
- W2142525363 cites W2162583366 @default.
- W2142525363 cites W2164547069 @default.
- W2142525363 cites W2165612380 @default.