Matches in SemOpenAlex for { <https://semopenalex.org/work/W2142553313> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2142553313 abstract "Machine learning has a vast range of applications. In particular, advanced machine learning methods are routinely and increasingly used in quantitative structure activity relationship (QSAR) modeling. QSAR data sets often encompass tens of thousands of compounds and the size of proprietary, as well as public data sets, is rapidly growing. Hence, there is a demand for computationally efficient machine learning algorithms, easily available to researchers without extensive machine learning knowledge. In granting the scientific principles of transparency and reproducibility, Open Source solutions are increasingly acknowledged by regulatory authorities. Thus, an Open Source state-of-the-art high performance machine learning platform, interfacing multiple, customized machine learning algorithms for both graphical programming and scripting, to be used for large scale development of QSAR models of regulatory quality, is of great value to the QSAR community. This paper describes the implementation of the Open Source machine learning package AZOrange. AZOrange is specially developed to support batch generation of QSAR models in providing the full work flow of QSAR modeling, from descriptor calculation to automated model building, validation and selection. The automated work flow relies upon the customization of the machine learning algorithms and a generalized, automated model hyper-parameter selection process. Several high performance machine learning algorithms are interfaced for efficient data set specific selection of the statistical method, promoting model accuracy. Using the high performance machine learning algorithms of AZOrange does not require programming knowledge as flexible applications can be created, not only at a scripting level, but also in a graphical programming environment. AZOrange is a step towards meeting the needs for an Open Source high performance machine learning platform, supporting the efficient development of highly accurate QSAR models fulfilling regulatory requirements." @default.
- W2142553313 created "2016-06-24" @default.
- W2142553313 creator A5030997667 @default.
- W2142553313 creator A5047210649 @default.
- W2142553313 creator A5063376974 @default.
- W2142553313 creator A5072219201 @default.
- W2142553313 date "2011-07-28" @default.
- W2142553313 modified "2023-10-14" @default.
- W2142553313 title "AZOrange - High performance open source machine learning for QSAR modeling in a graphical programming environment" @default.
- W2142553313 cites W1978163942 @default.
- W2142553313 cites W1993448217 @default.
- W2142553313 cites W2016043834 @default.
- W2142553313 cites W2017016867 @default.
- W2142553313 cites W2108987487 @default.
- W2142553313 cites W2133990480 @default.
- W2142553313 cites W2148797284 @default.
- W2142553313 cites W2163646378 @default.
- W2142553313 cites W2911964244 @default.
- W2142553313 cites W2952158693 @default.
- W2142553313 cites W3175318380 @default.
- W2142553313 doi "https://doi.org/10.1186/1758-2946-3-28" @default.
- W2142553313 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3158423" @default.
- W2142553313 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21798025" @default.
- W2142553313 hasPublicationYear "2011" @default.
- W2142553313 type Work @default.
- W2142553313 sameAs 2142553313 @default.
- W2142553313 citedByCount "39" @default.
- W2142553313 countsByYear W21425533132012 @default.
- W2142553313 countsByYear W21425533132013 @default.
- W2142553313 countsByYear W21425533132014 @default.
- W2142553313 countsByYear W21425533132015 @default.
- W2142553313 countsByYear W21425533132016 @default.
- W2142553313 countsByYear W21425533132017 @default.
- W2142553313 countsByYear W21425533132018 @default.
- W2142553313 countsByYear W21425533132020 @default.
- W2142553313 countsByYear W21425533132021 @default.
- W2142553313 countsByYear W21425533132022 @default.
- W2142553313 countsByYear W21425533132023 @default.
- W2142553313 crossrefType "journal-article" @default.
- W2142553313 hasAuthorship W2142553313A5030997667 @default.
- W2142553313 hasAuthorship W2142553313A5047210649 @default.
- W2142553313 hasAuthorship W2142553313A5063376974 @default.
- W2142553313 hasAuthorship W2142553313A5072219201 @default.
- W2142553313 hasBestOaLocation W21425533131 @default.
- W2142553313 hasConcept C119857082 @default.
- W2142553313 hasConcept C154945302 @default.
- W2142553313 hasConcept C164126121 @default.
- W2142553313 hasConcept C199360897 @default.
- W2142553313 hasConcept C41008148 @default.
- W2142553313 hasConcept C61423126 @default.
- W2142553313 hasConceptScore W2142553313C119857082 @default.
- W2142553313 hasConceptScore W2142553313C154945302 @default.
- W2142553313 hasConceptScore W2142553313C164126121 @default.
- W2142553313 hasConceptScore W2142553313C199360897 @default.
- W2142553313 hasConceptScore W2142553313C41008148 @default.
- W2142553313 hasConceptScore W2142553313C61423126 @default.
- W2142553313 hasIssue "1" @default.
- W2142553313 hasLocation W21425533131 @default.
- W2142553313 hasLocation W21425533132 @default.
- W2142553313 hasLocation W21425533133 @default.
- W2142553313 hasLocation W21425533134 @default.
- W2142553313 hasOpenAccess W2142553313 @default.
- W2142553313 hasPrimaryLocation W21425533131 @default.
- W2142553313 hasRelatedWork W2086733238 @default.
- W2142553313 hasRelatedWork W2355288082 @default.
- W2142553313 hasRelatedWork W2368553372 @default.
- W2142553313 hasRelatedWork W2961085424 @default.
- W2142553313 hasRelatedWork W3117501106 @default.
- W2142553313 hasRelatedWork W4285260836 @default.
- W2142553313 hasRelatedWork W4286629047 @default.
- W2142553313 hasRelatedWork W4306321456 @default.
- W2142553313 hasRelatedWork W4306674287 @default.
- W2142553313 hasRelatedWork W4224009465 @default.
- W2142553313 hasVolume "3" @default.
- W2142553313 isParatext "false" @default.
- W2142553313 isRetracted "false" @default.
- W2142553313 magId "2142553313" @default.
- W2142553313 workType "article" @default.