Matches in SemOpenAlex for { <https://semopenalex.org/work/W2142652110> ?p ?o ?g. }
- W2142652110 endingPage "3535" @default.
- W2142652110 startingPage "3520" @default.
- W2142652110 abstract "Many approaches have been studied for the array processing problem when the additive noise is modeled with a Gaussian distribution, but these schemes typically perform poorly when the noise is non-Gaussian and/or impulsive. This paper is concerned with maximum likelihood array processing in non-Gaussian noise. We present the Cramer-Rao bound on the variance of angle-of-arrival estimates for arbitrary additive, independent, identically distributed (iid), symmetric, non-Gaussian noise. Then, we focus on non-Gaussian noise modeling with a finite Gaussian mixture distribution, which is capable of representing a broad class of non-Gaussian distributions that include heavy tailed, impulsive cases arising in wireless communications and other applications. Based on the Gaussian mixture model, we develop an expectation-maximization (EM) algorithm for estimating the source locations, the signal waveforms, and the noise distribution parameters. The important problems of detecting the number of sources and obtaining initial parameter estimates for the iterative EM algorithm are discussed in detail. The initialization procedure by itself is an effective algorithm for array processing in impulsive noise. Novel features of the EM algorithm and the associated maximum likelihood formulation include a nonlinear beamformer that separates multiple source signals in non-Gaussian noise and a robust covariance matrix estimate that suppresses impulsive noise while also performing a model-based interpolation to restore the low-rank signal subspace. The EM approach yields improvement over initial robust estimates and is valid for a wide SNR range. The results are also robust to PDF model mismatch and work well with infinite variance cases such as the symmetric stable distributions. Simulations confirm the optimality of the EM estimation procedure in a variety of cases, including a multiuser communications scenario. We also compare with existing array processing algorithms for non-Gaussian noise." @default.
- W2142652110 created "2016-06-24" @default.
- W2142652110 creator A5037008370 @default.
- W2142652110 creator A5053858045 @default.
- W2142652110 date "2000-01-01" @default.
- W2142652110 modified "2023-10-18" @default.
- W2142652110 title "Maximum-likelihood array processing in non-Gaussian noise with Gaussian mixtures" @default.
- W2142652110 cites W1559579637 @default.
- W2142652110 cites W1981367467 @default.
- W2142652110 cites W2043034352 @default.
- W2142652110 cites W2045021643 @default.
- W2142652110 cites W2075721610 @default.
- W2142652110 cites W2087345669 @default.
- W2142652110 cites W2090705694 @default.
- W2142652110 cites W2096710051 @default.
- W2142652110 cites W2099433057 @default.
- W2142652110 cites W2106233398 @default.
- W2142652110 cites W2116414176 @default.
- W2142652110 cites W2120487365 @default.
- W2142652110 cites W2122674423 @default.
- W2142652110 cites W2126623653 @default.
- W2142652110 cites W2127657009 @default.
- W2142652110 cites W2129267223 @default.
- W2142652110 cites W2130458564 @default.
- W2142652110 cites W2133167956 @default.
- W2142652110 cites W2143341862 @default.
- W2142652110 cites W2144833976 @default.
- W2142652110 cites W2149755721 @default.
- W2142652110 cites W2150070410 @default.
- W2142652110 cites W2154191559 @default.
- W2142652110 cites W2157887330 @default.
- W2142652110 cites W2161465499 @default.
- W2142652110 cites W2161623414 @default.
- W2142652110 cites W2162654459 @default.
- W2142652110 cites W2165155912 @default.
- W2142652110 cites W2171013862 @default.
- W2142652110 doi "https://doi.org/10.1109/78.887045" @default.
- W2142652110 hasPublicationYear "2000" @default.
- W2142652110 type Work @default.
- W2142652110 sameAs 2142652110 @default.
- W2142652110 citedByCount "191" @default.
- W2142652110 countsByYear W21426521102012 @default.
- W2142652110 countsByYear W21426521102013 @default.
- W2142652110 countsByYear W21426521102014 @default.
- W2142652110 countsByYear W21426521102015 @default.
- W2142652110 countsByYear W21426521102016 @default.
- W2142652110 countsByYear W21426521102017 @default.
- W2142652110 countsByYear W21426521102018 @default.
- W2142652110 countsByYear W21426521102019 @default.
- W2142652110 countsByYear W21426521102020 @default.
- W2142652110 countsByYear W21426521102021 @default.
- W2142652110 countsByYear W21426521102022 @default.
- W2142652110 countsByYear W21426521102023 @default.
- W2142652110 crossrefType "journal-article" @default.
- W2142652110 hasAuthorship W2142652110A5037008370 @default.
- W2142652110 hasAuthorship W2142652110A5053858045 @default.
- W2142652110 hasConcept C104267543 @default.
- W2142652110 hasConcept C105795698 @default.
- W2142652110 hasConcept C112633086 @default.
- W2142652110 hasConcept C11413529 @default.
- W2142652110 hasConcept C115961682 @default.
- W2142652110 hasConcept C121332964 @default.
- W2142652110 hasConcept C154945302 @default.
- W2142652110 hasConcept C163716315 @default.
- W2142652110 hasConcept C169334058 @default.
- W2142652110 hasConcept C178650346 @default.
- W2142652110 hasConcept C2778545087 @default.
- W2142652110 hasConcept C33923547 @default.
- W2142652110 hasConcept C41008148 @default.
- W2142652110 hasConcept C4199805 @default.
- W2142652110 hasConcept C51267290 @default.
- W2142652110 hasConcept C554190296 @default.
- W2142652110 hasConcept C61326573 @default.
- W2142652110 hasConcept C62520636 @default.
- W2142652110 hasConcept C76155785 @default.
- W2142652110 hasConcept C99498987 @default.
- W2142652110 hasConceptScore W2142652110C104267543 @default.
- W2142652110 hasConceptScore W2142652110C105795698 @default.
- W2142652110 hasConceptScore W2142652110C112633086 @default.
- W2142652110 hasConceptScore W2142652110C11413529 @default.
- W2142652110 hasConceptScore W2142652110C115961682 @default.
- W2142652110 hasConceptScore W2142652110C121332964 @default.
- W2142652110 hasConceptScore W2142652110C154945302 @default.
- W2142652110 hasConceptScore W2142652110C163716315 @default.
- W2142652110 hasConceptScore W2142652110C169334058 @default.
- W2142652110 hasConceptScore W2142652110C178650346 @default.
- W2142652110 hasConceptScore W2142652110C2778545087 @default.
- W2142652110 hasConceptScore W2142652110C33923547 @default.
- W2142652110 hasConceptScore W2142652110C41008148 @default.
- W2142652110 hasConceptScore W2142652110C4199805 @default.
- W2142652110 hasConceptScore W2142652110C51267290 @default.
- W2142652110 hasConceptScore W2142652110C554190296 @default.
- W2142652110 hasConceptScore W2142652110C61326573 @default.
- W2142652110 hasConceptScore W2142652110C62520636 @default.
- W2142652110 hasConceptScore W2142652110C76155785 @default.
- W2142652110 hasConceptScore W2142652110C99498987 @default.
- W2142652110 hasIssue "12" @default.
- W2142652110 hasLocation W21426521101 @default.