Matches in SemOpenAlex for { <https://semopenalex.org/work/W2142720179> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2142720179 abstract "Most classification methods are limited by speed particularly when the training data set is large, such as artificial neural networks (ANNs) and support vector machines (SVMs). In this article, we explore the possibility of utilizing the mean shift algorithm, which is a mode seeking procedure that estimates the gradient of the data density, to decrease the sample size. We found that in a large number of samples to be trained, most samples can be clustered into a small number of mode centroids (extreme values of density), therefore, the original samples can be reduced by means of using the results of the mean shift procedure. To verify the validity of this method, several classifiers including the linear discriminant analysis (LDA), k nearest neighbor (kNN) and SVMs have been tested. Experimental results prove that when the parameters are selected appropriately, the proposed method is capable of reducing the computational complexity of above classification methods, with minimum effects on the classification accuracy." @default.
- W2142720179 created "2016-06-24" @default.
- W2142720179 creator A5063324879 @default.
- W2142720179 creator A5067795327 @default.
- W2142720179 date "2009-01-01" @default.
- W2142720179 modified "2023-09-27" @default.
- W2142720179 title "Sample Clustering for Fast Classification by Using the Mean Shift Procedure" @default.
- W2142720179 cites W1770825568 @default.
- W2142720179 cites W2021404082 @default.
- W2142720179 cites W2022686119 @default.
- W2142720179 cites W2055473071 @default.
- W2142720179 cites W2067191022 @default.
- W2142720179 cites W2118020555 @default.
- W2142720179 cites W2132407367 @default.
- W2142720179 cites W2132549764 @default.
- W2142720179 cites W2159128898 @default.
- W2142720179 cites W2164500538 @default.
- W2142720179 cites W184442817 @default.
- W2142720179 doi "https://doi.org/10.1109/isecs.2009.72" @default.
- W2142720179 hasPublicationYear "2009" @default.
- W2142720179 type Work @default.
- W2142720179 sameAs 2142720179 @default.
- W2142720179 citedByCount "1" @default.
- W2142720179 crossrefType "proceedings-article" @default.
- W2142720179 hasAuthorship W2142720179A5063324879 @default.
- W2142720179 hasAuthorship W2142720179A5067795327 @default.
- W2142720179 hasConcept C111919701 @default.
- W2142720179 hasConcept C113238511 @default.
- W2142720179 hasConcept C12267149 @default.
- W2142720179 hasConcept C146599234 @default.
- W2142720179 hasConcept C153180895 @default.
- W2142720179 hasConcept C154945302 @default.
- W2142720179 hasConcept C185592680 @default.
- W2142720179 hasConcept C198531522 @default.
- W2142720179 hasConcept C33923547 @default.
- W2142720179 hasConcept C41008148 @default.
- W2142720179 hasConcept C43617362 @default.
- W2142720179 hasConcept C48548287 @default.
- W2142720179 hasConcept C48677424 @default.
- W2142720179 hasConcept C50644808 @default.
- W2142720179 hasConcept C58489278 @default.
- W2142720179 hasConcept C69738355 @default.
- W2142720179 hasConcept C73555534 @default.
- W2142720179 hasConcept C78397625 @default.
- W2142720179 hasConceptScore W2142720179C111919701 @default.
- W2142720179 hasConceptScore W2142720179C113238511 @default.
- W2142720179 hasConceptScore W2142720179C12267149 @default.
- W2142720179 hasConceptScore W2142720179C146599234 @default.
- W2142720179 hasConceptScore W2142720179C153180895 @default.
- W2142720179 hasConceptScore W2142720179C154945302 @default.
- W2142720179 hasConceptScore W2142720179C185592680 @default.
- W2142720179 hasConceptScore W2142720179C198531522 @default.
- W2142720179 hasConceptScore W2142720179C33923547 @default.
- W2142720179 hasConceptScore W2142720179C41008148 @default.
- W2142720179 hasConceptScore W2142720179C43617362 @default.
- W2142720179 hasConceptScore W2142720179C48548287 @default.
- W2142720179 hasConceptScore W2142720179C48677424 @default.
- W2142720179 hasConceptScore W2142720179C50644808 @default.
- W2142720179 hasConceptScore W2142720179C58489278 @default.
- W2142720179 hasConceptScore W2142720179C69738355 @default.
- W2142720179 hasConceptScore W2142720179C73555534 @default.
- W2142720179 hasConceptScore W2142720179C78397625 @default.
- W2142720179 hasLocation W21427201791 @default.
- W2142720179 hasOpenAccess W2142720179 @default.
- W2142720179 hasPrimaryLocation W21427201791 @default.
- W2142720179 hasRelatedWork W2142720179 @default.
- W2142720179 hasRelatedWork W2146076056 @default.
- W2142720179 hasRelatedWork W2155880659 @default.
- W2142720179 hasRelatedWork W2167440101 @default.
- W2142720179 hasRelatedWork W2254323784 @default.
- W2142720179 hasRelatedWork W2353567328 @default.
- W2142720179 hasRelatedWork W2739275700 @default.
- W2142720179 hasRelatedWork W2900015663 @default.
- W2142720179 hasRelatedWork W3213693156 @default.
- W2142720179 hasRelatedWork W2584197808 @default.
- W2142720179 isParatext "false" @default.
- W2142720179 isRetracted "false" @default.
- W2142720179 magId "2142720179" @default.
- W2142720179 workType "article" @default.