Matches in SemOpenAlex for { <https://semopenalex.org/work/W2142808029> ?p ?o ?g. }
- W2142808029 endingPage "36" @default.
- W2142808029 startingPage "25" @default.
- W2142808029 abstract "AME Aquatic Microbial Ecology Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials AME 28:25-36 (2002) - doi:10.3354/ame028025 Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river Virginie Baldy1,*, Eric Chauvet1, Jean-Yves Charcosset1, Mark O. Gessner2 1Centre d¹Ecologie des Systèmes Aquatiques Continentaux, CNRS-UPS, 29 rue Jeanne Marvig, 31055 Toulouse Cedex, France 2Department of Limnology, EAWAG, Limnological Research Center, 6047 Kastanienbaum, Switzerland *Present address: Laboratoire de Biosystématique et Ecologie Méditerranéenne, Institut Méditerranéen d¹Ecologie et de Paléoécologie, Faculté des Sciences et Techniques de St-Jérôme, Case 421 bis, Avenue Escadrille Normandie Niemen, 13397 Marseille Cedex 20, France. E-mail: virginie.baldy@univ.u-3mrs.fr ABSTRACT: Aquatic habitats of forested floodplain systems receive large inputs of allochthonous plant litter. We examined the decomposition of, and microbial productivity associated with, leaves of a common floodplain tree, Populus gr. nigra, in the mainstem and floodplain pond of a seventh order river in 2 consecutive years. Litter bags were submerged at both sites, retrieved periodically, and analyzed for litter mass loss, bacterial and fungal biomass, growth rate and production, and sporulation rates of aquatic hyphomycetes. Litter decomposition rates were similar in both sites and years (leaf breakdown coefficients k of 0.0070 to 0.0085 d-1), although microbial dynamics partly differed between sites. Species diversity of aquatic hyphomycetes was lower on leaves submerged in the pond (16 species) than in the river (21 species). Mycelial biomass was also significantly lower in the pond, with values <20 mgCg-1 of detrital C, whereas peaks of 50 and 80 mgC g-1 were reached in leaves in the mainstem. These differences contrast with the comparable fungal productivity at both sites (peak rates of 1.4 mg of mycelial C per g of detrital C per day in both years). This suggests that fungi were equally productive in both habitats but experienced greater losses in the pond. Bacterial numbers and biomass also showed the same basic pattern at both sites, although somewhat higher levels were reached in the pond (maximum of about 1010 cells and 0.5 mg g-1 of detrital C). Bacterial-specific production rates fluctuated between 0.06 and 1.5 d-1 with lower values occurring in the floodplain pond. Although bacteria on leaves were clearly outweighed by fungi in terms of biomass, they accounted for a sizeable fraction of the total biomass (up to 11%), and up to 32% of the total microbial production. Our comparison of bacterial and fungal productivity thus points to a critical role of fungi in litter decomposition in aquatic habitats of river floodplain systems, while suggesting that bacteria must not be overlooked as important agents of litter decompositon in riverine environments. KEY WORDS: Fungi · Bacteria · Leaf litter · River · Floodplain · Decomposition · Microbial production Full text in pdf format PreviousNextExport citation RSS - Facebook - Tweet - linkedIn Cited by Published in AME Vol. 28, No. 1. Online publication date: May 16, 2002 Print ISSN: 0948-3055; Online ISSN: 1616-1564 Copyright © 2002 Inter-Research." @default.
- W2142808029 created "2016-06-24" @default.
- W2142808029 creator A5008357064 @default.
- W2142808029 creator A5010530302 @default.
- W2142808029 creator A5029799334 @default.
- W2142808029 creator A5055925282 @default.
- W2142808029 date "2002-01-01" @default.
- W2142808029 modified "2023-10-01" @default.
- W2142808029 title "Microbial dynamics associated with leaves decomposing in the mainstem and floodplain pond of a large river" @default.
- W2142808029 cites W1542017729 @default.
- W2142808029 cites W1575143126 @default.
- W2142808029 cites W1582987040 @default.
- W2142808029 cites W1589603082 @default.
- W2142808029 cites W1781600077 @default.
- W2142808029 cites W184976507 @default.
- W2142808029 cites W1967323717 @default.
- W2142808029 cites W1973078867 @default.
- W2142808029 cites W1974701259 @default.
- W2142808029 cites W1979804501 @default.
- W2142808029 cites W1982253831 @default.
- W2142808029 cites W1984242994 @default.
- W2142808029 cites W1984957788 @default.
- W2142808029 cites W1992803544 @default.
- W2142808029 cites W2016163235 @default.
- W2142808029 cites W2019780544 @default.
- W2142808029 cites W2019931463 @default.
- W2142808029 cites W2023357983 @default.
- W2142808029 cites W2025292761 @default.
- W2142808029 cites W2025597047 @default.
- W2142808029 cites W2027010411 @default.
- W2142808029 cites W2043101761 @default.
- W2142808029 cites W2046292278 @default.
- W2142808029 cites W2054484625 @default.
- W2142808029 cites W2054544478 @default.
- W2142808029 cites W2060384583 @default.
- W2142808029 cites W2065306265 @default.
- W2142808029 cites W2075435443 @default.
- W2142808029 cites W2075557761 @default.
- W2142808029 cites W2079476358 @default.
- W2142808029 cites W2079902815 @default.
- W2142808029 cites W2081355650 @default.
- W2142808029 cites W2082068147 @default.
- W2142808029 cites W2085921124 @default.
- W2142808029 cites W2089338717 @default.
- W2142808029 cites W2101337062 @default.
- W2142808029 cites W2107821661 @default.
- W2142808029 cites W2117889565 @default.
- W2142808029 cites W2118301067 @default.
- W2142808029 cites W2120062829 @default.
- W2142808029 cites W2124772588 @default.
- W2142808029 cites W2125662696 @default.
- W2142808029 cites W2133538621 @default.
- W2142808029 cites W2137196161 @default.
- W2142808029 cites W2142220137 @default.
- W2142808029 cites W2146421266 @default.
- W2142808029 cites W2159915004 @default.
- W2142808029 cites W2316418803 @default.
- W2142808029 cites W2324380059 @default.
- W2142808029 cites W2324647877 @default.
- W2142808029 cites W2326476313 @default.
- W2142808029 cites W2329058584 @default.
- W2142808029 cites W233622734 @default.
- W2142808029 cites W2345825385 @default.
- W2142808029 cites W2474275542 @default.
- W2142808029 cites W2482980869 @default.
- W2142808029 cites W2774442706 @default.
- W2142808029 cites W3159777793 @default.
- W2142808029 cites W2461077543 @default.
- W2142808029 doi "https://doi.org/10.3354/ame028025" @default.
- W2142808029 hasPublicationYear "2002" @default.
- W2142808029 type Work @default.
- W2142808029 sameAs 2142808029 @default.
- W2142808029 citedByCount "116" @default.
- W2142808029 countsByYear W21428080292012 @default.
- W2142808029 countsByYear W21428080292013 @default.
- W2142808029 countsByYear W21428080292014 @default.
- W2142808029 countsByYear W21428080292015 @default.
- W2142808029 countsByYear W21428080292016 @default.
- W2142808029 countsByYear W21428080292017 @default.
- W2142808029 countsByYear W21428080292018 @default.
- W2142808029 countsByYear W21428080292019 @default.
- W2142808029 countsByYear W21428080292020 @default.
- W2142808029 countsByYear W21428080292021 @default.
- W2142808029 countsByYear W21428080292022 @default.
- W2142808029 countsByYear W21428080292023 @default.
- W2142808029 crossrefType "journal-article" @default.
- W2142808029 hasAuthorship W2142808029A5008357064 @default.
- W2142808029 hasAuthorship W2142808029A5010530302 @default.
- W2142808029 hasAuthorship W2142808029A5029799334 @default.
- W2142808029 hasAuthorship W2142808029A5055925282 @default.
- W2142808029 hasBestOaLocation W21428080291 @default.
- W2142808029 hasConcept C110872660 @default.
- W2142808029 hasConcept C155681218 @default.
- W2142808029 hasConcept C175327387 @default.
- W2142808029 hasConcept C18903297 @default.
- W2142808029 hasConcept C205649164 @default.
- W2142808029 hasConcept C2777500802 @default.
- W2142808029 hasConcept C2779429622 @default.