Matches in SemOpenAlex for { <https://semopenalex.org/work/W2143051500> ?p ?o ?g. }
- W2143051500 endingPage "445" @default.
- W2143051500 startingPage "427" @default.
- W2143051500 abstract "In areas of moderate to low seismic activity there is commonly a lack of recorded strong ground motion. As a consequence, the prediction of ground motion expected for hypothetical future earthquakes is often performed by employing em- pirical models from other regions. In this context, Campbell's hybrid empirical ap- proach (Campbell, 2003, 2004) provides a methodological framework to adapt ground-motion prediction equations to arbitrary target regions by using response spectral host-to-target-region-conversion filters. For this purpose, the empirical ground-motion prediction equation has to be quantified in terms of a stochastic model. The problem we address here is how to do this in a systematic way and how to assess the corresponding uncertainties. For the determination of the model param- eters we use a genetic algorithm search. The stochastic model spectra were calculated by using a speed-optimized version of SMSIM (Boore, 2000). For most of the em- pirical ground-motion models, we obtain sets of stochastic models that match the empirical models within the full magnitude and distance ranges of their generating data sets fairly well. The overall quality of fit and the resulting model parameter sets strongly depend on the particular choice of the distance metric used for the stochastic model. We suggest the use of the hypocentral distance metric for the stochastic simulation of strong ground motion because it provides the lowest-misfit stochastic models for most empirical equations. This is in agreement with the results of two recent studies of hypocenter locations in finite-source models which indicate that hypocenters are often located close to regions of large slip (Mai et al., 2005; Mani- ghetti et al., 2005). Because essentially all empirical ground-motion prediction equa- tions contain data from different geographical regions, the model parameters corre- sponding to the lowest-misfit stochastic models cannot necessarily be expected to represent single, physically realizable host regions but to model the generating data sets in an average way. In addition, the differences between the lowest-misfit sto- chastic models and the empirical ground-motion prediction equation are strongly distance, magnitude, and frequency dependent, which, according to the laws of un- certainty propagation, will increase the variance of the corresponding hybrid empir- ical model predictions (Scherbaum et al., 2005). As a consequence, the selection of empirical ground-motion models for host-to-target-region conversions requires con- siderable judgment of the ground-motion analyst." @default.
- W2143051500 created "2016-06-24" @default.
- W2143051500 creator A5005516525 @default.
- W2143051500 creator A5055696814 @default.
- W2143051500 creator A5069806972 @default.
- W2143051500 date "2006-04-01" @default.
- W2143051500 modified "2023-10-17" @default.
- W2143051500 title "The Estimation of Minimum-Misfit Stochastic Models from Empirical Ground-Motion Prediction Equations" @default.
- W2143051500 cites W101178268 @default.
- W2143051500 cites W1487344631 @default.
- W2143051500 cites W1868191276 @default.
- W2143051500 cites W1965270678 @default.
- W2143051500 cites W1973966093 @default.
- W2143051500 cites W1994553199 @default.
- W2143051500 cites W1999555122 @default.
- W2143051500 cites W2006397449 @default.
- W2143051500 cites W2006706231 @default.
- W2143051500 cites W2008206416 @default.
- W2143051500 cites W2009512626 @default.
- W2143051500 cites W2032153140 @default.
- W2143051500 cites W2038057648 @default.
- W2143051500 cites W2040616304 @default.
- W2143051500 cites W2041342522 @default.
- W2143051500 cites W2041456298 @default.
- W2143051500 cites W2060442746 @default.
- W2143051500 cites W2060535067 @default.
- W2143051500 cites W2061547080 @default.
- W2143051500 cites W2070432448 @default.
- W2143051500 cites W2071836968 @default.
- W2143051500 cites W2081518822 @default.
- W2143051500 cites W2086253471 @default.
- W2143051500 cites W2096885477 @default.
- W2143051500 cites W2097259485 @default.
- W2143051500 cites W2097924088 @default.
- W2143051500 cites W2099566008 @default.
- W2143051500 cites W2101987062 @default.
- W2143051500 cites W2103817435 @default.
- W2143051500 cites W2110114457 @default.
- W2143051500 cites W2113975617 @default.
- W2143051500 cites W2126127244 @default.
- W2143051500 cites W2126518070 @default.
- W2143051500 cites W2126707052 @default.
- W2143051500 cites W2127442444 @default.
- W2143051500 cites W2141305017 @default.
- W2143051500 cites W2142018458 @default.
- W2143051500 cites W2146859678 @default.
- W2143051500 cites W2148938561 @default.
- W2143051500 cites W2152150600 @default.
- W2143051500 cites W2159265788 @default.
- W2143051500 cites W2163497455 @default.
- W2143051500 cites W2165161641 @default.
- W2143051500 cites W2168730731 @default.
- W2143051500 cites W2169307204 @default.
- W2143051500 cites W2182846149 @default.
- W2143051500 cites W2182902605 @default.
- W2143051500 cites W2185410891 @default.
- W2143051500 cites W2258563751 @default.
- W2143051500 cites W2286620461 @default.
- W2143051500 cites W2292241479 @default.
- W2143051500 cites W2296935872 @default.
- W2143051500 cites W2311034299 @default.
- W2143051500 cites W290734093 @default.
- W2143051500 cites W3023540311 @default.
- W2143051500 cites W2121259634 @default.
- W2143051500 doi "https://doi.org/10.1785/0120050015" @default.
- W2143051500 hasPublicationYear "2006" @default.
- W2143051500 type Work @default.
- W2143051500 sameAs 2143051500 @default.
- W2143051500 citedByCount "49" @default.
- W2143051500 countsByYear W21430515002012 @default.
- W2143051500 countsByYear W21430515002013 @default.
- W2143051500 countsByYear W21430515002014 @default.
- W2143051500 countsByYear W21430515002015 @default.
- W2143051500 countsByYear W21430515002016 @default.
- W2143051500 countsByYear W21430515002017 @default.
- W2143051500 countsByYear W21430515002018 @default.
- W2143051500 countsByYear W21430515002019 @default.
- W2143051500 countsByYear W21430515002020 @default.
- W2143051500 countsByYear W21430515002021 @default.
- W2143051500 countsByYear W21430515002022 @default.
- W2143051500 crossrefType "journal-article" @default.
- W2143051500 hasAuthorship W2143051500A5005516525 @default.
- W2143051500 hasAuthorship W2143051500A5055696814 @default.
- W2143051500 hasAuthorship W2143051500A5069806972 @default.
- W2143051500 hasConcept C121332964 @default.
- W2143051500 hasConcept C121864883 @default.
- W2143051500 hasConcept C127313418 @default.
- W2143051500 hasConcept C127413603 @default.
- W2143051500 hasConcept C13280743 @default.
- W2143051500 hasConcept C133199616 @default.
- W2143051500 hasConcept C149782125 @default.
- W2143051500 hasConcept C165205528 @default.
- W2143051500 hasConcept C201995342 @default.
- W2143051500 hasConcept C28826006 @default.
- W2143051500 hasConcept C2988284105 @default.
- W2143051500 hasConcept C33923547 @default.
- W2143051500 hasConcept C41008148 @default.
- W2143051500 hasConcept C44154836 @default.