Matches in SemOpenAlex for { <https://semopenalex.org/work/W2143085547> ?p ?o ?g. }
- W2143085547 abstract "Email is one of the most prevalent communication tools today, and solving the email overload problem is pressingly urgent. A good way to alleviate email overload is to automatically prioritize received messages according to the priorities of each user. However, research on statistical learning methods for fully personalized email prioritization (PEP) has been sparse due to privacy issues, since people are reluctant to share personal messages and importance judgments with the research community. It is therefore important to develop and evaluate PEP methods under the assumption that only limited training examples can be available, and that the system can only have the personal email data of each user during the training and testing of the model for that user. This paper presents the first study (to the best of our knowledge) under such an assumption. Specifically, we focus on analysis of personal social networks to capture user groups and to obtain rich features that represent the social roles from the viewpoint of a particular user. We also developed a novel semi-supervised (transductive) learning algorithm that propagates importance labels from training examples to test examples through message and user nodes in a personal email network. These methods together enable us to obtain an enriched vector representation of each new email message, which consists of both standard features of an email message (such as words in the title or body, sender and receiver IDs, etc.) and the induced social features from the sender and receivers of the message. Using the enriched vector representation as the input in SVM classifiers to predict the importance level for each test message, we obtained significant performance improvement over the baseline system (without induced social features) in our experiments on a multi-user data collection. We obtained significant performance improvement over the baseline system (without induced social features) in our experiments on a multi-user data collection: the relative error reduction in MAE was 31% in micro-averaging, and 14% in macro-averaging." @default.
- W2143085547 created "2016-06-24" @default.
- W2143085547 creator A5017589963 @default.
- W2143085547 creator A5041434096 @default.
- W2143085547 creator A5048176207 @default.
- W2143085547 creator A5051679566 @default.
- W2143085547 date "2009-06-28" @default.
- W2143085547 modified "2023-09-23" @default.
- W2143085547 title "Mining social networks for personalized email prioritization" @default.
- W2143085547 cites W1963709204 @default.
- W2143085547 cites W2040717637 @default.
- W2143085547 cites W2052742498 @default.
- W2143085547 cites W2066636486 @default.
- W2143085547 cites W2112554371 @default.
- W2143085547 cites W2137597548 @default.
- W2143085547 cites W2138621811 @default.
- W2143085547 cites W950821216 @default.
- W2143085547 doi "https://doi.org/10.1145/1557019.1557124" @default.
- W2143085547 hasPublicationYear "2009" @default.
- W2143085547 type Work @default.
- W2143085547 sameAs 2143085547 @default.
- W2143085547 citedByCount "93" @default.
- W2143085547 countsByYear W21430855472012 @default.
- W2143085547 countsByYear W21430855472013 @default.
- W2143085547 countsByYear W21430855472014 @default.
- W2143085547 countsByYear W21430855472015 @default.
- W2143085547 countsByYear W21430855472016 @default.
- W2143085547 countsByYear W21430855472017 @default.
- W2143085547 countsByYear W21430855472018 @default.
- W2143085547 countsByYear W21430855472019 @default.
- W2143085547 countsByYear W21430855472020 @default.
- W2143085547 countsByYear W21430855472021 @default.
- W2143085547 countsByYear W21430855472022 @default.
- W2143085547 countsByYear W21430855472023 @default.
- W2143085547 crossrefType "proceedings-article" @default.
- W2143085547 hasAuthorship W2143085547A5017589963 @default.
- W2143085547 hasAuthorship W2143085547A5041434096 @default.
- W2143085547 hasAuthorship W2143085547A5048176207 @default.
- W2143085547 hasAuthorship W2143085547A5051679566 @default.
- W2143085547 hasConcept C119857082 @default.
- W2143085547 hasConcept C120665830 @default.
- W2143085547 hasConcept C121332964 @default.
- W2143085547 hasConcept C136764020 @default.
- W2143085547 hasConcept C162324750 @default.
- W2143085547 hasConcept C17744445 @default.
- W2143085547 hasConcept C186625053 @default.
- W2143085547 hasConcept C192209626 @default.
- W2143085547 hasConcept C194699767 @default.
- W2143085547 hasConcept C198104137 @default.
- W2143085547 hasConcept C199539241 @default.
- W2143085547 hasConcept C21564112 @default.
- W2143085547 hasConcept C23123220 @default.
- W2143085547 hasConcept C26517878 @default.
- W2143085547 hasConcept C2776359362 @default.
- W2143085547 hasConcept C2777615720 @default.
- W2143085547 hasConcept C31258907 @default.
- W2143085547 hasConcept C38652104 @default.
- W2143085547 hasConcept C41008148 @default.
- W2143085547 hasConcept C4727928 @default.
- W2143085547 hasConcept C518677369 @default.
- W2143085547 hasConcept C539667460 @default.
- W2143085547 hasConcept C550791530 @default.
- W2143085547 hasConcept C94625758 @default.
- W2143085547 hasConceptScore W2143085547C119857082 @default.
- W2143085547 hasConceptScore W2143085547C120665830 @default.
- W2143085547 hasConceptScore W2143085547C121332964 @default.
- W2143085547 hasConceptScore W2143085547C136764020 @default.
- W2143085547 hasConceptScore W2143085547C162324750 @default.
- W2143085547 hasConceptScore W2143085547C17744445 @default.
- W2143085547 hasConceptScore W2143085547C186625053 @default.
- W2143085547 hasConceptScore W2143085547C192209626 @default.
- W2143085547 hasConceptScore W2143085547C194699767 @default.
- W2143085547 hasConceptScore W2143085547C198104137 @default.
- W2143085547 hasConceptScore W2143085547C199539241 @default.
- W2143085547 hasConceptScore W2143085547C21564112 @default.
- W2143085547 hasConceptScore W2143085547C23123220 @default.
- W2143085547 hasConceptScore W2143085547C26517878 @default.
- W2143085547 hasConceptScore W2143085547C2776359362 @default.
- W2143085547 hasConceptScore W2143085547C2777615720 @default.
- W2143085547 hasConceptScore W2143085547C31258907 @default.
- W2143085547 hasConceptScore W2143085547C38652104 @default.
- W2143085547 hasConceptScore W2143085547C41008148 @default.
- W2143085547 hasConceptScore W2143085547C4727928 @default.
- W2143085547 hasConceptScore W2143085547C518677369 @default.
- W2143085547 hasConceptScore W2143085547C539667460 @default.
- W2143085547 hasConceptScore W2143085547C550791530 @default.
- W2143085547 hasConceptScore W2143085547C94625758 @default.
- W2143085547 hasLocation W21430855471 @default.
- W2143085547 hasOpenAccess W2143085547 @default.
- W2143085547 hasPrimaryLocation W21430855471 @default.
- W2143085547 hasRelatedWork W2086064646 @default.
- W2143085547 hasRelatedWork W2093597205 @default.
- W2143085547 hasRelatedWork W2115485936 @default.
- W2143085547 hasRelatedWork W2119135658 @default.
- W2143085547 hasRelatedWork W2143085547 @default.
- W2143085547 hasRelatedWork W2152394300 @default.
- W2143085547 hasRelatedWork W2159070593 @default.
- W2143085547 hasRelatedWork W2189349763 @default.
- W2143085547 hasRelatedWork W2357241418 @default.
- W2143085547 hasRelatedWork W2748952813 @default.