Matches in SemOpenAlex for { <https://semopenalex.org/work/W2143137748> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2143137748 endingPage "416" @default.
- W2143137748 startingPage "407" @default.
- W2143137748 abstract "Given evidence on a set of variables in a Bayesian network, the most probable explanation (MPE) is the problem of finding a configuration of the remaining variables with maximum posterior probability. This problem has previously been addressed for discrete Bayesian networks and can be solved using inference methods similar to those used for finding posterior probabilities. However, when dealing with hybrid Bayesian networks, such as conditional linear Gaussian (CLG) networks, the MPE problem has only received little attention. In this paper, we provide insights into the general problem of finding an MPE configuration in a CLG network. For solving this problem, we devise an algorithm based on bucket elimination and with the same computational complexity as that of calculating posterior marginals in a CLG network. We illustrate the workings of the algorithm using a detailed numerical example, and discuss possible extensions of the algorithm for handling the more general problem of finding a maximum a posteriori hypothesis (MAP)." @default.
- W2143137748 created "2016-06-24" @default.
- W2143137748 creator A5040301804 @default.
- W2143137748 creator A5046555644 @default.
- W2143137748 creator A5050934335 @default.
- W2143137748 creator A5080416900 @default.
- W2143137748 creator A5084283099 @default.
- W2143137748 date "2015-01-01" @default.
- W2143137748 modified "2023-10-06" @default.
- W2143137748 title "MPE Inference in Conditional Linear Gaussian Networks" @default.
- W2143137748 cites W1982333717 @default.
- W2143137748 cites W2007652239 @default.
- W2143137748 cites W2038374320 @default.
- W2143137748 cites W2058569910 @default.
- W2143137748 cites W2110715012 @default.
- W2143137748 cites W2148018895 @default.
- W2143137748 cites W570386608 @default.
- W2143137748 doi "https://doi.org/10.1007/978-3-319-20807-7_37" @default.
- W2143137748 hasPublicationYear "2015" @default.
- W2143137748 type Work @default.
- W2143137748 sameAs 2143137748 @default.
- W2143137748 citedByCount "3" @default.
- W2143137748 countsByYear W21431377482016 @default.
- W2143137748 countsByYear W21431377482019 @default.
- W2143137748 crossrefType "book-chapter" @default.
- W2143137748 hasAuthorship W2143137748A5040301804 @default.
- W2143137748 hasAuthorship W2143137748A5046555644 @default.
- W2143137748 hasAuthorship W2143137748A5050934335 @default.
- W2143137748 hasAuthorship W2143137748A5080416900 @default.
- W2143137748 hasAuthorship W2143137748A5084283099 @default.
- W2143137748 hasBestOaLocation W21431377482 @default.
- W2143137748 hasConcept C105795698 @default.
- W2143137748 hasConcept C107673813 @default.
- W2143137748 hasConcept C111472728 @default.
- W2143137748 hasConcept C11413529 @default.
- W2143137748 hasConcept C121332964 @default.
- W2143137748 hasConcept C138885662 @default.
- W2143137748 hasConcept C154945302 @default.
- W2143137748 hasConcept C160234255 @default.
- W2143137748 hasConcept C163716315 @default.
- W2143137748 hasConcept C177264268 @default.
- W2143137748 hasConcept C199360897 @default.
- W2143137748 hasConcept C2776214188 @default.
- W2143137748 hasConcept C2777472644 @default.
- W2143137748 hasConcept C33724603 @default.
- W2143137748 hasConcept C33923547 @default.
- W2143137748 hasConcept C41008148 @default.
- W2143137748 hasConcept C49781872 @default.
- W2143137748 hasConcept C57830394 @default.
- W2143137748 hasConcept C62520636 @default.
- W2143137748 hasConcept C75553542 @default.
- W2143137748 hasConcept C9810830 @default.
- W2143137748 hasConceptScore W2143137748C105795698 @default.
- W2143137748 hasConceptScore W2143137748C107673813 @default.
- W2143137748 hasConceptScore W2143137748C111472728 @default.
- W2143137748 hasConceptScore W2143137748C11413529 @default.
- W2143137748 hasConceptScore W2143137748C121332964 @default.
- W2143137748 hasConceptScore W2143137748C138885662 @default.
- W2143137748 hasConceptScore W2143137748C154945302 @default.
- W2143137748 hasConceptScore W2143137748C160234255 @default.
- W2143137748 hasConceptScore W2143137748C163716315 @default.
- W2143137748 hasConceptScore W2143137748C177264268 @default.
- W2143137748 hasConceptScore W2143137748C199360897 @default.
- W2143137748 hasConceptScore W2143137748C2776214188 @default.
- W2143137748 hasConceptScore W2143137748C2777472644 @default.
- W2143137748 hasConceptScore W2143137748C33724603 @default.
- W2143137748 hasConceptScore W2143137748C33923547 @default.
- W2143137748 hasConceptScore W2143137748C41008148 @default.
- W2143137748 hasConceptScore W2143137748C49781872 @default.
- W2143137748 hasConceptScore W2143137748C57830394 @default.
- W2143137748 hasConceptScore W2143137748C62520636 @default.
- W2143137748 hasConceptScore W2143137748C75553542 @default.
- W2143137748 hasConceptScore W2143137748C9810830 @default.
- W2143137748 hasLocation W21431377481 @default.
- W2143137748 hasLocation W21431377482 @default.
- W2143137748 hasLocation W21431377483 @default.
- W2143137748 hasLocation W21431377484 @default.
- W2143137748 hasLocation W21431377485 @default.
- W2143137748 hasLocation W21431377486 @default.
- W2143137748 hasOpenAccess W2143137748 @default.
- W2143137748 hasPrimaryLocation W21431377481 @default.
- W2143137748 hasRelatedWork W1531632781 @default.
- W2143137748 hasRelatedWork W1568590601 @default.
- W2143137748 hasRelatedWork W2067883763 @default.
- W2143137748 hasRelatedWork W2551157417 @default.
- W2143137748 hasRelatedWork W3089983729 @default.
- W2143137748 hasRelatedWork W3113351345 @default.
- W2143137748 hasRelatedWork W3168765527 @default.
- W2143137748 hasRelatedWork W4206272924 @default.
- W2143137748 hasRelatedWork W4226332603 @default.
- W2143137748 hasRelatedWork W4286903091 @default.
- W2143137748 isParatext "false" @default.
- W2143137748 isRetracted "false" @default.
- W2143137748 magId "2143137748" @default.
- W2143137748 workType "book-chapter" @default.