Matches in SemOpenAlex for { <https://semopenalex.org/work/W2143677664> ?p ?o ?g. }
- W2143677664 endingPage "10695" @default.
- W2143677664 startingPage "10680" @default.
- W2143677664 abstract "ABSTRACT Mammalian genomes are replete with retrotransposable elements, including endogenous retroviruses. DNA methyltransferase 3-like (DNMT3L) is an epigenetic regulator expressed in prospermatogonia, growing oocytes, and embryonic stem (ES) cells. Here, we demonstrate that DNMT3L enhances the interaction of repressive epigenetic modifiers, including histone deacetylase 1 (HDAC1), SET domain, bifurcated 1 (SETDB1), DNA methyltransferase 3A (DNMT3A), and tripartite motif-containing protein 28 (TRIM28; also known as TIF1β and KAP1) in ES cells and orchestrates retroviral silencing activity with TRIM28 through mechanisms including, but not limited to, de novo DNA methylation. Ectopic expression of DNMT3L in somatic cells causes methylation-independent retroviral silencing activity by recruitment of the TRIM28/HDAC1/SETDB1/DNMT3A/DNMT3L complex to newly integrated Moloney murine leukemia virus (Mo-MuLV) proviral DNA. Concurrent with this recruitment, we also observed the accumulation of histone H3 lysine 9 trimethylation (H3K9me3) and heterochromatin protein 1 gamma (HP1γ), as well as reduced H3K9 and H3K27 acetylation at Mo-MuLV proviral sequences. Ectopic expression of DNMT3L in late-passage mouse embryonic fibroblasts (MEFs) recruited cytoplasmically localized HDAC1 to the nucleus. The formation of this epigenetic modifying complex requires interaction of DNMT3L with DNMT3A as well as with histone H3. In fetal testes at embryonic day 17.5, endogenous DNMT3L also enhanced the binding among TRIM28, DNMT3A, SETDB1, and HDAC1. We propose that DNMT3L may be involved in initiating a cascade of repressive epigenetic modifications by assisting in the preparation of a chromatin context that further attracts DNMT3A-DNMT3L binding and installs longer-term DNA methylation marks at newly integrated retroviruses. IMPORTANCE Almost half of the mammalian genome is composed of endogenous retroviruses and other retrotransposable elements that threaten genomic integrity. These elements are usually subject to epigenetic silencing. We discovered that two epigenetic regulators that lack enzymatic activity, DNA methyltransferase 3-like (DNMT3L) and tripartite motif-containing protein 28 (TRIM28), collaborate with each other to impose retroviral silencing. In addition to modulating de novo DNA methylation, we found that by interacting with TRIM28, DNMT3L can attract various enzymes to form a DNMT3L-induced repressive complex to remove active marks and add repressive marks to histone proteins. Collectively, these results reveal a novel and pivotal function of DNMT3L in shaping the chromatin modifications necessary for retroviral and retrotransposon silencing." @default.
- W2143677664 created "2016-06-24" @default.
- W2143677664 creator A5009411311 @default.
- W2143677664 creator A5017863962 @default.
- W2143677664 creator A5028119330 @default.
- W2143677664 creator A5028895511 @default.
- W2143677664 creator A5030182043 @default.
- W2143677664 creator A5031165574 @default.
- W2143677664 creator A5031225867 @default.
- W2143677664 creator A5037205866 @default.
- W2143677664 creator A5040628414 @default.
- W2143677664 creator A5050803462 @default.
- W2143677664 creator A5063084412 @default.
- W2143677664 creator A5072912490 @default.
- W2143677664 creator A5073839222 @default.
- W2143677664 creator A5081595657 @default.
- W2143677664 date "2014-09-15" @default.
- W2143677664 modified "2023-09-27" @default.
- W2143677664 title "Ectopic DNMT3L Triggers Assembly of a Repressive Complex for Retroviral Silencing in Somatic Cells" @default.
- W2143677664 cites W1528634627 @default.
- W2143677664 cites W1548710060 @default.
- W2143677664 cites W1566907549 @default.
- W2143677664 cites W1603793127 @default.
- W2143677664 cites W1673514954 @default.
- W2143677664 cites W1900275723 @default.
- W2143677664 cites W1973694997 @default.
- W2143677664 cites W1973759523 @default.
- W2143677664 cites W1981354816 @default.
- W2143677664 cites W1986447756 @default.
- W2143677664 cites W2002727819 @default.
- W2143677664 cites W2005643112 @default.
- W2143677664 cites W2008933729 @default.
- W2143677664 cites W2017387896 @default.
- W2143677664 cites W2019127737 @default.
- W2143677664 cites W2025511843 @default.
- W2143677664 cites W2032822109 @default.
- W2143677664 cites W2037923864 @default.
- W2143677664 cites W2040770363 @default.
- W2143677664 cites W2040891039 @default.
- W2143677664 cites W2046804572 @default.
- W2143677664 cites W2059919630 @default.
- W2143677664 cites W2060446375 @default.
- W2143677664 cites W2069043023 @default.
- W2143677664 cites W2077053535 @default.
- W2143677664 cites W2079562528 @default.
- W2143677664 cites W2083150665 @default.
- W2143677664 cites W2088171363 @default.
- W2143677664 cites W2088306169 @default.
- W2143677664 cites W2089417246 @default.
- W2143677664 cites W2097851896 @default.
- W2143677664 cites W2098589211 @default.
- W2143677664 cites W2100361299 @default.
- W2143677664 cites W2105073128 @default.
- W2143677664 cites W2110576677 @default.
- W2143677664 cites W2111801210 @default.
- W2143677664 cites W2114350943 @default.
- W2143677664 cites W2115552263 @default.
- W2143677664 cites W2118008591 @default.
- W2143677664 cites W2127630386 @default.
- W2143677664 cites W2136270288 @default.
- W2143677664 cites W2142396207 @default.
- W2143677664 cites W2145675333 @default.
- W2143677664 cites W2149790281 @default.
- W2143677664 cites W2150631208 @default.
- W2143677664 cites W2150733697 @default.
- W2143677664 cites W2151026121 @default.
- W2143677664 cites W2152326948 @default.
- W2143677664 cites W2156212878 @default.
- W2143677664 cites W2161191369 @default.
- W2143677664 cites W2781948754 @default.
- W2143677664 cites W4235059488 @default.
- W2143677664 doi "https://doi.org/10.1128/jvi.01176-14" @default.
- W2143677664 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4178851" @default.
- W2143677664 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24991018" @default.
- W2143677664 hasPublicationYear "2014" @default.
- W2143677664 type Work @default.
- W2143677664 sameAs 2143677664 @default.
- W2143677664 citedByCount "23" @default.
- W2143677664 countsByYear W21436776642015 @default.
- W2143677664 countsByYear W21436776642016 @default.
- W2143677664 countsByYear W21436776642017 @default.
- W2143677664 countsByYear W21436776642018 @default.
- W2143677664 countsByYear W21436776642020 @default.
- W2143677664 countsByYear W21436776642021 @default.
- W2143677664 countsByYear W21436776642022 @default.
- W2143677664 crossrefType "journal-article" @default.
- W2143677664 hasAuthorship W2143677664A5009411311 @default.
- W2143677664 hasAuthorship W2143677664A5017863962 @default.
- W2143677664 hasAuthorship W2143677664A5028119330 @default.
- W2143677664 hasAuthorship W2143677664A5028895511 @default.
- W2143677664 hasAuthorship W2143677664A5030182043 @default.
- W2143677664 hasAuthorship W2143677664A5031165574 @default.
- W2143677664 hasAuthorship W2143677664A5031225867 @default.
- W2143677664 hasAuthorship W2143677664A5037205866 @default.
- W2143677664 hasAuthorship W2143677664A5040628414 @default.
- W2143677664 hasAuthorship W2143677664A5050803462 @default.
- W2143677664 hasAuthorship W2143677664A5063084412 @default.
- W2143677664 hasAuthorship W2143677664A5072912490 @default.