Matches in SemOpenAlex for { <https://semopenalex.org/work/W2143997612> ?p ?o ?g. }
- W2143997612 endingPage "1461" @default.
- W2143997612 startingPage "1419" @default.
- W2143997612 abstract "The main result of this paper is an application of the topology of the space Q ( X ) to obtain results for the cohomology of the symmetric group on d letters, Σ d , with ‘twisted’ coefficients in various choices of Young modules and to show that these computations reduce to certain natural questions in representation theory. The authors extend classical methods for analyzing the homology of certain spaces Q ( X ) with mod- p coefficients to describe the homology H • ( Σ d , V ⊗ d ) as a module for the general linear group GL ( V ) over an algebraically closed field k of characteristic p . As a direct application, these results provide a method of reducing the computation of Ext Σ d • ( Y λ , Y μ ) (where Y λ , Y μ are Young modules) to a representation theoretic problem involving the determination of tensor products and decomposition numbers. In particular, in characteristic two, for many d , a complete determination of H • ( Σ d Y λ ) can be found. This is the first nontrivial class of symmetric group modules where a complete description of the cohomology in all degrees can be given. For arbitrary d the authors determine H i ( Σ d , Y λ ) for i = 0 , 1 , 2 . An interesting phenomenon is uncovered-namely a stability result reminiscent of generic cohomology for algebraic groups. For each i the cohomology H i ( Σ p a d , Y p a λ ) stabilizes as a increases. The methods in this paper are also powerful enough to determine, for any p and λ , precisely when H • ( Σ d , Y λ ) = 0 . Such modules with vanishing cohomology are of great interest in representation theory because their support varieties constitute the representation theoretic nucleus." @default.
- W2143997612 created "2016-06-24" @default.
- W2143997612 creator A5013883174 @default.
- W2143997612 creator A5053557747 @default.
- W2143997612 creator A5072379484 @default.
- W2143997612 date "2010-07-01" @default.
- W2143997612 modified "2023-09-29" @default.
- W2143997612 title "On the cohomology of Young modules for the symmetric group" @default.
- W2143997612 cites W1608133196 @default.
- W2143997612 cites W1979515730 @default.
- W2143997612 cites W1991366721 @default.
- W2143997612 cites W1996157007 @default.
- W2143997612 cites W1997504131 @default.
- W2143997612 cites W2002669370 @default.
- W2143997612 cites W2007525926 @default.
- W2143997612 cites W2019671822 @default.
- W2143997612 cites W2020948209 @default.
- W2143997612 cites W2042175345 @default.
- W2143997612 cites W2078144208 @default.
- W2143997612 cites W2082147259 @default.
- W2143997612 cites W2090957376 @default.
- W2143997612 cites W2095195370 @default.
- W2143997612 cites W2109029245 @default.
- W2143997612 cites W2109524363 @default.
- W2143997612 cites W2119366337 @default.
- W2143997612 cites W2145978876 @default.
- W2143997612 cites W2318346397 @default.
- W2143997612 cites W2327640665 @default.
- W2143997612 doi "https://doi.org/10.1016/j.aim.2010.01.004" @default.
- W2143997612 hasPublicationYear "2010" @default.
- W2143997612 type Work @default.
- W2143997612 sameAs 2143997612 @default.
- W2143997612 citedByCount "15" @default.
- W2143997612 countsByYear W21439976122012 @default.
- W2143997612 countsByYear W21439976122014 @default.
- W2143997612 countsByYear W21439976122015 @default.
- W2143997612 countsByYear W21439976122016 @default.
- W2143997612 countsByYear W21439976122018 @default.
- W2143997612 countsByYear W21439976122019 @default.
- W2143997612 countsByYear W21439976122021 @default.
- W2143997612 crossrefType "journal-article" @default.
- W2143997612 hasAuthorship W2143997612A5013883174 @default.
- W2143997612 hasAuthorship W2143997612A5053557747 @default.
- W2143997612 hasAuthorship W2143997612A5072379484 @default.
- W2143997612 hasBestOaLocation W21439976122 @default.
- W2143997612 hasConcept C104317684 @default.
- W2143997612 hasConcept C114614502 @default.
- W2143997612 hasConcept C134306372 @default.
- W2143997612 hasConcept C155751095 @default.
- W2143997612 hasConcept C165525559 @default.
- W2143997612 hasConcept C178790620 @default.
- W2143997612 hasConcept C184720557 @default.
- W2143997612 hasConcept C185592680 @default.
- W2143997612 hasConcept C202444582 @default.
- W2143997612 hasConcept C203701370 @default.
- W2143997612 hasConcept C2781311116 @default.
- W2143997612 hasConcept C33923547 @default.
- W2143997612 hasConcept C55493867 @default.
- W2143997612 hasConcept C68365058 @default.
- W2143997612 hasConcept C72738302 @default.
- W2143997612 hasConcept C78606066 @default.
- W2143997612 hasConcept C9376300 @default.
- W2143997612 hasConceptScore W2143997612C104317684 @default.
- W2143997612 hasConceptScore W2143997612C114614502 @default.
- W2143997612 hasConceptScore W2143997612C134306372 @default.
- W2143997612 hasConceptScore W2143997612C155751095 @default.
- W2143997612 hasConceptScore W2143997612C165525559 @default.
- W2143997612 hasConceptScore W2143997612C178790620 @default.
- W2143997612 hasConceptScore W2143997612C184720557 @default.
- W2143997612 hasConceptScore W2143997612C185592680 @default.
- W2143997612 hasConceptScore W2143997612C202444582 @default.
- W2143997612 hasConceptScore W2143997612C203701370 @default.
- W2143997612 hasConceptScore W2143997612C2781311116 @default.
- W2143997612 hasConceptScore W2143997612C33923547 @default.
- W2143997612 hasConceptScore W2143997612C55493867 @default.
- W2143997612 hasConceptScore W2143997612C68365058 @default.
- W2143997612 hasConceptScore W2143997612C72738302 @default.
- W2143997612 hasConceptScore W2143997612C78606066 @default.
- W2143997612 hasConceptScore W2143997612C9376300 @default.
- W2143997612 hasIssue "4" @default.
- W2143997612 hasLocation W21439976121 @default.
- W2143997612 hasLocation W21439976122 @default.
- W2143997612 hasLocation W21439976123 @default.
- W2143997612 hasLocation W21439976124 @default.
- W2143997612 hasOpenAccess W2143997612 @default.
- W2143997612 hasPrimaryLocation W21439976121 @default.
- W2143997612 hasRelatedWork W1548875490 @default.
- W2143997612 hasRelatedWork W2001316918 @default.
- W2143997612 hasRelatedWork W2005127081 @default.
- W2143997612 hasRelatedWork W2020654192 @default.
- W2143997612 hasRelatedWork W2062622918 @default.
- W2143997612 hasRelatedWork W2101460433 @default.
- W2143997612 hasRelatedWork W2143997612 @default.
- W2143997612 hasRelatedWork W2770033843 @default.
- W2143997612 hasRelatedWork W2900419191 @default.
- W2143997612 hasRelatedWork W4309566505 @default.
- W2143997612 hasVolume "224" @default.
- W2143997612 isParatext "false" @default.