Matches in SemOpenAlex for { <https://semopenalex.org/work/W2144095623> ?p ?o ?g. }
- W2144095623 endingPage "1588" @default.
- W2144095623 startingPage "1575" @default.
- W2144095623 abstract "Abstract. In the United States, estimation of flood frequency quantiles at ungauged locations has been largely based on regional regression techniques that relate measurable catchment descriptors to flood quantiles. More recently, spatial interpolation techniques of point data have been shown to be effective for predicting streamflow statistics (i.e., flood flows and low-flow indices) in ungauged catchments. Literature reports successful applications of two techniques, canonical kriging, CK (or physiographical-space-based interpolation, PSBI), and topological kriging, TK (or top-kriging). CK performs the spatial interpolation of the streamflow statistic of interest in the two-dimensional space of catchment descriptors. TK predicts the streamflow statistic along river networks taking both the catchment area and nested nature of catchments into account. It is of interest to understand how these spatial interpolation methods compare with generalized least squares (GLS) regression, one of the most common approaches to estimate flood quantiles at ungauged locations. By means of a leave-one-out cross-validation procedure, the performance of CK and TK was compared to GLS regression equations developed for the prediction of 10, 50, 100 and 500 yr floods for 61 streamgauges in the southeast United States. TK substantially outperforms GLS and CK for the study area, particularly for large catchments. The performance of TK over GLS highlights an important distinction between the treatments of spatial correlation when using regression-based or spatial interpolation methods to estimate flood quantiles at ungauged locations. The analysis also shows that coupling TK with CK slightly improves the performance of TK; however, the improvement is marginal when compared to the improvement in performance over GLS." @default.
- W2144095623 created "2016-06-24" @default.
- W2144095623 creator A5039074434 @default.
- W2144095623 creator A5042844214 @default.
- W2144095623 creator A5065117189 @default.
- W2144095623 creator A5066530772 @default.
- W2144095623 creator A5075961408 @default.
- W2144095623 date "2013-04-23" @default.
- W2144095623 modified "2023-10-16" @default.
- W2144095623 title "Topological and canonical kriging for design flood prediction in ungauged catchments: an improvement over a traditional regional regression approach?" @default.
- W2144095623 cites W1510540944 @default.
- W2144095623 cites W1594720646 @default.
- W2144095623 cites W1598372991 @default.
- W2144095623 cites W1598924616 @default.
- W2144095623 cites W1645678420 @default.
- W2144095623 cites W1972101324 @default.
- W2144095623 cites W2008484329 @default.
- W2144095623 cites W2008560977 @default.
- W2144095623 cites W2032534395 @default.
- W2144095623 cites W2033904036 @default.
- W2144095623 cites W2045597588 @default.
- W2144095623 cites W2048069199 @default.
- W2144095623 cites W2056199992 @default.
- W2144095623 cites W2059327887 @default.
- W2144095623 cites W2065576960 @default.
- W2144095623 cites W2082983485 @default.
- W2144095623 cites W2100620001 @default.
- W2144095623 cites W2111183161 @default.
- W2144095623 cites W2112407619 @default.
- W2144095623 cites W2144156998 @default.
- W2144095623 cites W2146773183 @default.
- W2144095623 cites W2152936651 @default.
- W2144095623 cites W2155421966 @default.
- W2144095623 cites W2166781611 @default.
- W2144095623 cites W2169359815 @default.
- W2144095623 cites W2496675188 @default.
- W2144095623 cites W4237489709 @default.
- W2144095623 cites W73201326 @default.
- W2144095623 doi "https://doi.org/10.5194/hess-17-1575-2013" @default.
- W2144095623 hasPublicationYear "2013" @default.
- W2144095623 type Work @default.
- W2144095623 sameAs 2144095623 @default.
- W2144095623 citedByCount "42" @default.
- W2144095623 countsByYear W21440956232013 @default.
- W2144095623 countsByYear W21440956232014 @default.
- W2144095623 countsByYear W21440956232015 @default.
- W2144095623 countsByYear W21440956232016 @default.
- W2144095623 countsByYear W21440956232017 @default.
- W2144095623 countsByYear W21440956232018 @default.
- W2144095623 countsByYear W21440956232019 @default.
- W2144095623 countsByYear W21440956232020 @default.
- W2144095623 countsByYear W21440956232021 @default.
- W2144095623 countsByYear W21440956232022 @default.
- W2144095623 countsByYear W21440956232023 @default.
- W2144095623 crossrefType "journal-article" @default.
- W2144095623 hasAuthorship W2144095623A5039074434 @default.
- W2144095623 hasAuthorship W2144095623A5042844214 @default.
- W2144095623 hasAuthorship W2144095623A5065117189 @default.
- W2144095623 hasAuthorship W2144095623A5066530772 @default.
- W2144095623 hasAuthorship W2144095623A5075961408 @default.
- W2144095623 hasBestOaLocation W21440956231 @default.
- W2144095623 hasConcept C104114177 @default.
- W2144095623 hasConcept C105795698 @default.
- W2144095623 hasConcept C118671147 @default.
- W2144095623 hasConcept C126645576 @default.
- W2144095623 hasConcept C137800194 @default.
- W2144095623 hasConcept C138695830 @default.
- W2144095623 hasConcept C154945302 @default.
- W2144095623 hasConcept C166957645 @default.
- W2144095623 hasConcept C203332170 @default.
- W2144095623 hasConcept C205203396 @default.
- W2144095623 hasConcept C205649164 @default.
- W2144095623 hasConcept C33923547 @default.
- W2144095623 hasConcept C41008148 @default.
- W2144095623 hasConcept C53739315 @default.
- W2144095623 hasConcept C58640448 @default.
- W2144095623 hasConcept C74256435 @default.
- W2144095623 hasConcept C81692654 @default.
- W2144095623 hasConcept C83546350 @default.
- W2144095623 hasConcept C89128539 @default.
- W2144095623 hasConceptScore W2144095623C104114177 @default.
- W2144095623 hasConceptScore W2144095623C105795698 @default.
- W2144095623 hasConceptScore W2144095623C118671147 @default.
- W2144095623 hasConceptScore W2144095623C126645576 @default.
- W2144095623 hasConceptScore W2144095623C137800194 @default.
- W2144095623 hasConceptScore W2144095623C138695830 @default.
- W2144095623 hasConceptScore W2144095623C154945302 @default.
- W2144095623 hasConceptScore W2144095623C166957645 @default.
- W2144095623 hasConceptScore W2144095623C203332170 @default.
- W2144095623 hasConceptScore W2144095623C205203396 @default.
- W2144095623 hasConceptScore W2144095623C205649164 @default.
- W2144095623 hasConceptScore W2144095623C33923547 @default.
- W2144095623 hasConceptScore W2144095623C41008148 @default.
- W2144095623 hasConceptScore W2144095623C53739315 @default.
- W2144095623 hasConceptScore W2144095623C58640448 @default.
- W2144095623 hasConceptScore W2144095623C74256435 @default.
- W2144095623 hasConceptScore W2144095623C81692654 @default.
- W2144095623 hasConceptScore W2144095623C83546350 @default.