Matches in SemOpenAlex for { <https://semopenalex.org/work/W2144164089> ?p ?o ?g. }
- W2144164089 endingPage "20" @default.
- W2144164089 startingPage "2" @default.
- W2144164089 abstract "Covariance estimation becomes challenging in the regime where the number p of variables outstrips the number n of samples available to construct the estimate. One way to circumvent this problem is to assume that the covariance matrix is nearly sparse and to focus on estimating only the significant entries. To analyse this approach, Levina & Vershynin (2011, Probab. Theory Related Fields) introduce a formalism called masked covariance estimation, where each entry of the sample covariance estimator is reweighted to reflect an a priori assessment of its importance. This paper provides a short analysis of the masked sample covariance estimator by means of a matrix concentration inequality. The main result applies to general distributions with at least four moments. Specialized to the case of a Gaussian distribution, the theory offers qualitative improvements over earlier work. For example, the new results show that n=O(B log2p) samples suffice to estimate a banded covariance matrix with bandwidth B up to a relative spectral-norm error, in contrast to the sample complexity n=O(B log5p) obtained by Levina and Vershynin." @default.
- W2144164089 created "2016-06-24" @default.
- W2144164089 creator A5000879912 @default.
- W2144164089 creator A5005243537 @default.
- W2144164089 creator A5038646656 @default.
- W2144164089 date "2012-05-15" @default.
- W2144164089 modified "2023-10-10" @default.
- W2144164089 title "The masked sample covariance estimator: an analysis using matrix concentration inequalities" @default.
- W2144164089 cites W1488435683 @default.
- W2144164089 cites W1489537150 @default.
- W2144164089 cites W1544839292 @default.
- W2144164089 cites W1546851689 @default.
- W2144164089 cites W1586554030 @default.
- W2144164089 cites W1789701990 @default.
- W2144164089 cites W1807129068 @default.
- W2144164089 cites W1967134148 @default.
- W2144164089 cites W1998058722 @default.
- W2144164089 cites W2006867140 @default.
- W2144164089 cites W2020775053 @default.
- W2144164089 cites W2040950184 @default.
- W2144164089 cites W2044825056 @default.
- W2144164089 cites W2056625421 @default.
- W2144164089 cites W2057535756 @default.
- W2144164089 cites W2076932506 @default.
- W2144164089 cites W2077649571 @default.
- W2144164089 cites W2084913894 @default.
- W2144164089 cites W2089564046 @default.
- W2144164089 cites W2092165326 @default.
- W2144164089 cites W2112440119 @default.
- W2144164089 cites W2120350343 @default.
- W2144164089 cites W2120872934 @default.
- W2144164089 cites W2134348739 @default.
- W2144164089 cites W2137798267 @default.
- W2144164089 cites W2610857016 @default.
- W2144164089 cites W2798707604 @default.
- W2144164089 cites W2965497096 @default.
- W2144164089 cites W3098365576 @default.
- W2144164089 cites W3099514962 @default.
- W2144164089 cites W3099609308 @default.
- W2144164089 cites W3100110387 @default.
- W2144164089 cites W3101788651 @default.
- W2144164089 cites W3103699839 @default.
- W2144164089 doi "https://doi.org/10.1093/imaiai/ias001" @default.
- W2144164089 hasPublicationYear "2012" @default.
- W2144164089 type Work @default.
- W2144164089 sameAs 2144164089 @default.
- W2144164089 citedByCount "38" @default.
- W2144164089 countsByYear W21441640892012 @default.
- W2144164089 countsByYear W21441640892013 @default.
- W2144164089 countsByYear W21441640892014 @default.
- W2144164089 countsByYear W21441640892015 @default.
- W2144164089 countsByYear W21441640892016 @default.
- W2144164089 countsByYear W21441640892017 @default.
- W2144164089 countsByYear W21441640892018 @default.
- W2144164089 countsByYear W21441640892019 @default.
- W2144164089 countsByYear W21441640892020 @default.
- W2144164089 countsByYear W21441640892021 @default.
- W2144164089 countsByYear W21441640892022 @default.
- W2144164089 countsByYear W21441640892023 @default.
- W2144164089 crossrefType "journal-article" @default.
- W2144164089 hasAuthorship W2144164089A5000879912 @default.
- W2144164089 hasAuthorship W2144164089A5005243537 @default.
- W2144164089 hasAuthorship W2144164089A5038646656 @default.
- W2144164089 hasBestOaLocation W21441640891 @default.
- W2144164089 hasConcept C105795698 @default.
- W2144164089 hasConcept C121332964 @default.
- W2144164089 hasConcept C126372606 @default.
- W2144164089 hasConcept C129759605 @default.
- W2144164089 hasConcept C137250428 @default.
- W2144164089 hasConcept C148893098 @default.
- W2144164089 hasConcept C158693339 @default.
- W2144164089 hasConcept C163716315 @default.
- W2144164089 hasConcept C176917957 @default.
- W2144164089 hasConcept C178650346 @default.
- W2144164089 hasConcept C180877172 @default.
- W2144164089 hasConcept C181243257 @default.
- W2144164089 hasConcept C185142706 @default.
- W2144164089 hasConcept C185429906 @default.
- W2144164089 hasConcept C28826006 @default.
- W2144164089 hasConcept C33923547 @default.
- W2144164089 hasConcept C62520636 @default.
- W2144164089 hasConcept C83042196 @default.
- W2144164089 hasConcept C92207270 @default.
- W2144164089 hasConceptScore W2144164089C105795698 @default.
- W2144164089 hasConceptScore W2144164089C121332964 @default.
- W2144164089 hasConceptScore W2144164089C126372606 @default.
- W2144164089 hasConceptScore W2144164089C129759605 @default.
- W2144164089 hasConceptScore W2144164089C137250428 @default.
- W2144164089 hasConceptScore W2144164089C148893098 @default.
- W2144164089 hasConceptScore W2144164089C158693339 @default.
- W2144164089 hasConceptScore W2144164089C163716315 @default.
- W2144164089 hasConceptScore W2144164089C176917957 @default.
- W2144164089 hasConceptScore W2144164089C178650346 @default.
- W2144164089 hasConceptScore W2144164089C180877172 @default.
- W2144164089 hasConceptScore W2144164089C181243257 @default.
- W2144164089 hasConceptScore W2144164089C185142706 @default.
- W2144164089 hasConceptScore W2144164089C185429906 @default.
- W2144164089 hasConceptScore W2144164089C28826006 @default.