Matches in SemOpenAlex for { <https://semopenalex.org/work/W2144272685> ?p ?o ?g. }
- W2144272685 endingPage "4225" @default.
- W2144272685 startingPage "4209" @default.
- W2144272685 abstract "Abstract. Hydrodynamic models are useful tools for urban water management. Unfortunately, it is still challenging to obtain accurate results and plausible uncertainty estimates when using these models. In particular, with the currently applied statistical techniques, flow predictions are usually overconfident and biased. In this study, we present a flexible and relatively efficient methodology (i) to obtain more reliable hydrological simulations in terms of coverage of validation data by the uncertainty bands and (ii) to separate prediction uncertainty into its components. Our approach acknowledges that urban drainage predictions are biased. This is mostly due to input errors and structural deficits of the model. We address this issue by describing model bias in a Bayesian framework. The bias becomes an autoregressive term additional to white measurement noise, the only error type accounted for in traditional uncertainty analysis. To allow for bigger discrepancies during wet weather, we make the variance of bias dependent on the input (rainfall) or/and output (runoff) of the system. Specifically, we present a structured approach to select, among five variants, the optimal bias description for a given urban or natural case study. We tested the methodology in a small monitored stormwater system described with a parsimonious model. Our results clearly show that flow simulations are much more reliable when bias is accounted for than when it is neglected. Furthermore, our probabilistic predictions can discriminate between three uncertainty contributions: parametric uncertainty, bias, and measurement errors. In our case study, the best performing bias description is the output-dependent bias using a log-sinh transformation of data and model results. The limitations of the framework presented are some ambiguity due to the subjective choice of priors for bias parameters and its inability to address the causes of model discrepancies. Further research should focus on quantifying and reducing the causes of bias by improving the model structure and propagating input uncertainty." @default.
- W2144272685 created "2016-06-24" @default.
- W2144272685 creator A5000840713 @default.
- W2144272685 creator A5008632581 @default.
- W2144272685 creator A5033731839 @default.
- W2144272685 creator A5041673830 @default.
- W2144272685 creator A5043177459 @default.
- W2144272685 creator A5062066278 @default.
- W2144272685 date "2013-10-28" @default.
- W2144272685 modified "2023-10-17" @default.
- W2144272685 title "Improving uncertainty estimation in urban hydrological modeling by statistically describing bias" @default.
- W2144272685 cites W129305155 @default.
- W2144272685 cites W1481511658 @default.
- W2144272685 cites W1493653825 @default.
- W2144272685 cites W1508776097 @default.
- W2144272685 cites W1513809808 @default.
- W2144272685 cites W1537228030 @default.
- W2144272685 cites W1572310225 @default.
- W2144272685 cites W1588946961 @default.
- W2144272685 cites W1627049501 @default.
- W2144272685 cites W1862292973 @default.
- W2144272685 cites W1874609171 @default.
- W2144272685 cites W1916457060 @default.
- W2144272685 cites W1973333099 @default.
- W2144272685 cites W1974419079 @default.
- W2144272685 cites W1976122240 @default.
- W2144272685 cites W1991640470 @default.
- W2144272685 cites W1993576561 @default.
- W2144272685 cites W1995780830 @default.
- W2144272685 cites W2004883664 @default.
- W2144272685 cites W2012798851 @default.
- W2144272685 cites W2017756287 @default.
- W2144272685 cites W2017957151 @default.
- W2144272685 cites W2026170388 @default.
- W2144272685 cites W2027319489 @default.
- W2144272685 cites W2028706309 @default.
- W2144272685 cites W2033904036 @default.
- W2144272685 cites W2034480608 @default.
- W2144272685 cites W2058967488 @default.
- W2144272685 cites W2061872692 @default.
- W2144272685 cites W2065637266 @default.
- W2144272685 cites W2065675922 @default.
- W2144272685 cites W2068862991 @default.
- W2144272685 cites W2078921340 @default.
- W2144272685 cites W2079760049 @default.
- W2144272685 cites W2084936238 @default.
- W2144272685 cites W2092612581 @default.
- W2144272685 cites W2117681582 @default.
- W2144272685 cites W2138309709 @default.
- W2144272685 cites W2146495904 @default.
- W2144272685 cites W2147623518 @default.
- W2144272685 cites W2163669663 @default.
- W2144272685 cites W2164452805 @default.
- W2144272685 cites W2170396766 @default.
- W2144272685 cites W2247852027 @default.
- W2144272685 cites W2487303223 @default.
- W2144272685 cites W2505520105 @default.
- W2144272685 cites W3005725022 @default.
- W2144272685 cites W402869233 @default.
- W2144272685 cites W4238082866 @default.
- W2144272685 cites W4240844614 @default.
- W2144272685 doi "https://doi.org/10.5194/hess-17-4209-2013" @default.
- W2144272685 hasPublicationYear "2013" @default.
- W2144272685 type Work @default.
- W2144272685 sameAs 2144272685 @default.
- W2144272685 citedByCount "82" @default.
- W2144272685 countsByYear W21442726852013 @default.
- W2144272685 countsByYear W21442726852014 @default.
- W2144272685 countsByYear W21442726852015 @default.
- W2144272685 countsByYear W21442726852016 @default.
- W2144272685 countsByYear W21442726852017 @default.
- W2144272685 countsByYear W21442726852018 @default.
- W2144272685 countsByYear W21442726852019 @default.
- W2144272685 countsByYear W21442726852020 @default.
- W2144272685 countsByYear W21442726852021 @default.
- W2144272685 countsByYear W21442726852022 @default.
- W2144272685 countsByYear W21442726852023 @default.
- W2144272685 crossrefType "journal-article" @default.
- W2144272685 hasAuthorship W2144272685A5000840713 @default.
- W2144272685 hasAuthorship W2144272685A5008632581 @default.
- W2144272685 hasAuthorship W2144272685A5033731839 @default.
- W2144272685 hasAuthorship W2144272685A5041673830 @default.
- W2144272685 hasAuthorship W2144272685A5043177459 @default.
- W2144272685 hasAuthorship W2144272685A5062066278 @default.
- W2144272685 hasBestOaLocation W21442726851 @default.
- W2144272685 hasConcept C105795698 @default.
- W2144272685 hasConcept C107673813 @default.
- W2144272685 hasConcept C117251300 @default.
- W2144272685 hasConcept C121955636 @default.
- W2144272685 hasConcept C126197015 @default.
- W2144272685 hasConcept C127313418 @default.
- W2144272685 hasConcept C144133560 @default.
- W2144272685 hasConcept C149782125 @default.
- W2144272685 hasConcept C154945302 @default.
- W2144272685 hasConcept C159877910 @default.
- W2144272685 hasConcept C177803969 @default.
- W2144272685 hasConcept C196083921 @default.
- W2144272685 hasConcept C33923547 @default.