Matches in SemOpenAlex for { <https://semopenalex.org/work/W2144366961> ?p ?o ?g. }
- W2144366961 endingPage "301" @default.
- W2144366961 startingPage "281" @default.
- W2144366961 abstract "We present a fully automated framework to estimate derivatives nonparametrically without estimating the regression function. Derivative estimation plays an important role in the exploration of structures in curves (jump detection and discontinuities), comparison of regression curves, analysis of human growth data, etc. Hence, the study of estimating derivatives is equally important as regression estimation itself. Via empirical derivatives we approximate the qth order derivative and create a new data set which can be smoothed by any nonparametric regression estimator. We derive L1 and L2 rates and establish consistency of the estimator. The new data sets created by this technique are no longer independent and identically distributed (i.i.d.) random variables anymore. As a consequence, automated model selection criteria (data-driven procedures) break down. Therefore, we propose a simple factor method, based on bimodal kernels, to effectively deal with correlated data in the local polynomial regression framework." @default.
- W2144366961 created "2016-06-24" @default.
- W2144366961 creator A5018814006 @default.
- W2144366961 creator A5032425845 @default.
- W2144366961 creator A5059409711 @default.
- W2144366961 creator A5071674403 @default.
- W2144366961 date "2013-01-01" @default.
- W2144366961 modified "2023-10-15" @default.
- W2144366961 title "Derivative estimation with local polynomial fitting" @default.
- W2144366961 cites W1484867920 @default.
- W2144366961 cites W1511694993 @default.
- W2144366961 cites W1975285668 @default.
- W2144366961 cites W1999698136 @default.
- W2144366961 cites W2006473943 @default.
- W2144366961 cites W2014497688 @default.
- W2144366961 cites W2020389998 @default.
- W2144366961 cites W2024602863 @default.
- W2144366961 cites W2039470961 @default.
- W2144366961 cites W2065274576 @default.
- W2144366961 cites W2069888879 @default.
- W2144366961 cites W2087884045 @default.
- W2144366961 cites W2090373435 @default.
- W2144366961 cites W2093189858 @default.
- W2144366961 cites W2094645802 @default.
- W2144366961 cites W2096850081 @default.
- W2144366961 cites W2099416373 @default.
- W2144366961 cites W2101424588 @default.
- W2144366961 cites W2103041471 @default.
- W2144366961 cites W2155393745 @default.
- W2144366961 cites W2155729182 @default.
- W2144366961 cites W2161844741 @default.
- W2144366961 cites W2163591144 @default.
- W2144366961 cites W2286642557 @default.
- W2144366961 cites W2329341088 @default.
- W2144366961 cites W2411801785 @default.
- W2144366961 cites W2525862104 @default.
- W2144366961 cites W3105451738 @default.
- W2144366961 cites W390280418 @default.
- W2144366961 cites W78182116 @default.
- W2144366961 doi "https://doi.org/10.5555/2567709.2502590" @default.
- W2144366961 hasPublicationYear "2013" @default.
- W2144366961 type Work @default.
- W2144366961 sameAs 2144366961 @default.
- W2144366961 citedByCount "14" @default.
- W2144366961 countsByYear W21443669612014 @default.
- W2144366961 countsByYear W21443669612015 @default.
- W2144366961 countsByYear W21443669612016 @default.
- W2144366961 countsByYear W21443669612017 @default.
- W2144366961 countsByYear W21443669612018 @default.
- W2144366961 countsByYear W21443669612020 @default.
- W2144366961 countsByYear W21443669612021 @default.
- W2144366961 countsByYear W21443669612023 @default.
- W2144366961 crossrefType "journal-article" @default.
- W2144366961 hasAuthorship W2144366961A5018814006 @default.
- W2144366961 hasAuthorship W2144366961A5032425845 @default.
- W2144366961 hasAuthorship W2144366961A5059409711 @default.
- W2144366961 hasAuthorship W2144366961A5071674403 @default.
- W2144366961 hasConcept C102366305 @default.
- W2144366961 hasConcept C105795698 @default.
- W2144366961 hasConcept C118615104 @default.
- W2144366961 hasConcept C120068334 @default.
- W2144366961 hasConcept C122123141 @default.
- W2144366961 hasConcept C126255220 @default.
- W2144366961 hasConcept C134306372 @default.
- W2144366961 hasConcept C141513077 @default.
- W2144366961 hasConcept C152877465 @default.
- W2144366961 hasConcept C15627037 @default.
- W2144366961 hasConcept C185429906 @default.
- W2144366961 hasConcept C2776436953 @default.
- W2144366961 hasConcept C28826006 @default.
- W2144366961 hasConcept C33923547 @default.
- W2144366961 hasConcept C41008148 @default.
- W2144366961 hasConcept C60316415 @default.
- W2144366961 hasConcept C74127309 @default.
- W2144366961 hasConcept C83546350 @default.
- W2144366961 hasConcept C90119067 @default.
- W2144366961 hasConceptScore W2144366961C102366305 @default.
- W2144366961 hasConceptScore W2144366961C105795698 @default.
- W2144366961 hasConceptScore W2144366961C118615104 @default.
- W2144366961 hasConceptScore W2144366961C120068334 @default.
- W2144366961 hasConceptScore W2144366961C122123141 @default.
- W2144366961 hasConceptScore W2144366961C126255220 @default.
- W2144366961 hasConceptScore W2144366961C134306372 @default.
- W2144366961 hasConceptScore W2144366961C141513077 @default.
- W2144366961 hasConceptScore W2144366961C152877465 @default.
- W2144366961 hasConceptScore W2144366961C15627037 @default.
- W2144366961 hasConceptScore W2144366961C185429906 @default.
- W2144366961 hasConceptScore W2144366961C2776436953 @default.
- W2144366961 hasConceptScore W2144366961C28826006 @default.
- W2144366961 hasConceptScore W2144366961C33923547 @default.
- W2144366961 hasConceptScore W2144366961C41008148 @default.
- W2144366961 hasConceptScore W2144366961C60316415 @default.
- W2144366961 hasConceptScore W2144366961C74127309 @default.
- W2144366961 hasConceptScore W2144366961C83546350 @default.
- W2144366961 hasConceptScore W2144366961C90119067 @default.
- W2144366961 hasIssue "1" @default.
- W2144366961 hasLocation W21443669611 @default.
- W2144366961 hasOpenAccess W2144366961 @default.