Matches in SemOpenAlex for { <https://semopenalex.org/work/W2144635514> ?p ?o ?g. }
- W2144635514 endingPage "4056" @default.
- W2144635514 startingPage "4051" @default.
- W2144635514 abstract "The most important limitation of antifungal QSAR models is that they predict the biological activity of drugs against only one fungal species. This is determined due the fact that most of the up-to-date reported molecular descriptors encode only information about the molecular structure. Consequently, predicting the probability with which a drug is active against different fungal species with a single unifying model is a goal of major importance. Herein, we use the Markov Chain theory to calculate new multi-target spectral moments to fit a QSAR model that predicts the antifungal activity of more than 280 drugs against 90 fungi species. Linear discriminant analysis (LDA) was used to classify drugs into two classes as active or non-active against the different tested fungal species whose data we processed. The model correctly classifies 12 434 out of 12 566 non-active compounds (98.95%) and 421 out of 468 active compounds (89.96%). Overall training predictability was 98.63%. Validation of the model was carried out by means of external predicting series, the model classifying, thus, 6216 out of 6277 non-active compounds and 215 out of 239 active compounds. Overall training predictability was 98.7%. The present is the first attempt to calculate, within a unifying framework, the probabilities of antifungal action of drugs against many different species based on spectral moment’s analysis." @default.
- W2144635514 created "2016-06-24" @default.
- W2144635514 creator A5013497733 @default.
- W2144635514 creator A5068000809 @default.
- W2144635514 creator A5077102348 @default.
- W2144635514 creator A5077960864 @default.
- W2144635514 date "2009-10-01" @default.
- W2144635514 modified "2023-10-18" @default.
- W2144635514 title "Multi-target spectral moment: QSAR for antifungal drugs vs. different fungi species" @default.
- W2144635514 cites W125260092 @default.
- W2144635514 cites W1545231783 @default.
- W2144635514 cites W1963516639 @default.
- W2144635514 cites W1965345429 @default.
- W2144635514 cites W1967616514 @default.
- W2144635514 cites W1967888993 @default.
- W2144635514 cites W1968361401 @default.
- W2144635514 cites W1970068990 @default.
- W2144635514 cites W1971920484 @default.
- W2144635514 cites W1971934634 @default.
- W2144635514 cites W1981404094 @default.
- W2144635514 cites W1985417761 @default.
- W2144635514 cites W1988249921 @default.
- W2144635514 cites W1988880705 @default.
- W2144635514 cites W1992681902 @default.
- W2144635514 cites W1999246286 @default.
- W2144635514 cites W2005012539 @default.
- W2144635514 cites W2008343108 @default.
- W2144635514 cites W2010708237 @default.
- W2144635514 cites W2016003728 @default.
- W2144635514 cites W2029334184 @default.
- W2144635514 cites W2031618663 @default.
- W2144635514 cites W2037032199 @default.
- W2144635514 cites W2037838449 @default.
- W2144635514 cites W2045568930 @default.
- W2144635514 cites W2058655555 @default.
- W2144635514 cites W2059449978 @default.
- W2144635514 cites W2063122849 @default.
- W2144635514 cites W2065753888 @default.
- W2144635514 cites W2069636715 @default.
- W2144635514 cites W2072671784 @default.
- W2144635514 cites W2075898920 @default.
- W2144635514 cites W2076046206 @default.
- W2144635514 cites W2076592170 @default.
- W2144635514 cites W2082021116 @default.
- W2144635514 cites W2083352412 @default.
- W2144635514 cites W2086186669 @default.
- W2144635514 cites W2086571384 @default.
- W2144635514 cites W2088437415 @default.
- W2144635514 cites W2093354577 @default.
- W2144635514 cites W2097760161 @default.
- W2144635514 cites W2107019398 @default.
- W2144635514 cites W2128566472 @default.
- W2144635514 cites W2134587691 @default.
- W2144635514 cites W2151180344 @default.
- W2144635514 cites W2157142295 @default.
- W2144635514 cites W2158225794 @default.
- W2144635514 cites W2167772971 @default.
- W2144635514 cites W2177886018 @default.
- W2144635514 cites W2219114748 @default.
- W2144635514 cites W2312361311 @default.
- W2144635514 cites W2412093082 @default.
- W2144635514 cites W278909723 @default.
- W2144635514 cites W565730825 @default.
- W2144635514 doi "https://doi.org/10.1016/j.ejmech.2009.04.040" @default.
- W2144635514 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19467743" @default.
- W2144635514 hasPublicationYear "2009" @default.
- W2144635514 type Work @default.
- W2144635514 sameAs 2144635514 @default.
- W2144635514 citedByCount "48" @default.
- W2144635514 countsByYear W21446355142012 @default.
- W2144635514 countsByYear W21446355142013 @default.
- W2144635514 countsByYear W21446355142014 @default.
- W2144635514 countsByYear W21446355142015 @default.
- W2144635514 countsByYear W21446355142016 @default.
- W2144635514 countsByYear W21446355142017 @default.
- W2144635514 countsByYear W21446355142018 @default.
- W2144635514 countsByYear W21446355142019 @default.
- W2144635514 countsByYear W21446355142020 @default.
- W2144635514 countsByYear W21446355142021 @default.
- W2144635514 countsByYear W21446355142022 @default.
- W2144635514 crossrefType "journal-article" @default.
- W2144635514 hasAuthorship W2144635514A5013497733 @default.
- W2144635514 hasAuthorship W2144635514A5068000809 @default.
- W2144635514 hasAuthorship W2144635514A5077102348 @default.
- W2144635514 hasAuthorship W2144635514A5077960864 @default.
- W2144635514 hasConcept C105795698 @default.
- W2144635514 hasConcept C119857082 @default.
- W2144635514 hasConcept C154945302 @default.
- W2144635514 hasConcept C164126121 @default.
- W2144635514 hasConcept C164923092 @default.
- W2144635514 hasConcept C185592680 @default.
- W2144635514 hasConcept C186060115 @default.
- W2144635514 hasConcept C197640229 @default.
- W2144635514 hasConcept C2779548794 @default.
- W2144635514 hasConcept C2991737395 @default.
- W2144635514 hasConcept C33923547 @default.
- W2144635514 hasConcept C41008148 @default.
- W2144635514 hasConcept C69738355 @default.