Matches in SemOpenAlex for { <https://semopenalex.org/work/W2144647583> ?p ?o ?g. }
- W2144647583 endingPage "810" @default.
- W2144647583 startingPage "799" @default.
- W2144647583 abstract "Most benign breast tumors possess well-defined, sharp boundaries that delineate them from surrounding tissues, as opposed to malignant tumors. Computer techniques proposed to date for tumor analysis have concentrated on shape factors of tumor regions and texture measures. While shape measures based on contours of tumor regions can indicate differences in shape complexities between circumscribed and spiculated tumors, they are not designed to characterize the density variations across the boundary of a tumor. In this paper we propose a region-based measure of image edge profile acutance which characterizes the transition in density of a region of interest (ROI) along normals to the ROI at every boundary pixel. We investigate the potential of acutance in quantifying the sharpness of the boundaries of tumors, and propose its application to discriminate between benign and malignant mammographic tumors. In addition, we study the complementary use of various shape factors based upon the shape of the ROI, such as compactness, Fourier descriptors, moments, and chord-length statistics to distinguish between circumscribed and spiculated tumors. Thirty-nine images from the Mammographic Image Analysis Society (MIAS) database and an additional set of 15 local cases were selected for this study. The cases included 16 circumscribed benign, seven circumscribed malignant, 12 spiculated benign, and 19 spiculated malignant lesions. All diagnoses were proven by pathologic examinations of resected tissue. The contours of the lesions were first marked by an expert radiologist using X-Paint and X-Windows on a SUN-SPARCstation 2 Workstation. For computation of acutance, the ROI boundaries were iteratively approximated using a split/merge and end-point adjustment technique to obtain the best-fitting polygonal approximation. The jackknife method using the Mahalanobis distance measure in the BMDP (Biomedical Programs) package was used for classification of the lesions using acutance and the shape factors as features in various combinations. Acutance alone resulted in a benign/malignant classification accuracy of 95% the MIAS cases. Compactness alone gave a circumscribed/spiculated classification rate of 92.3% with the MIAS cases. Acutance in combination with a moment-based shape measure and a Fourier descriptor-based measure gave four-group classification rate of 95% with the MIAS cases. The results indicate the importance of including lesion edge definition with shape information for classification of tumors, and that the proposed measure of acutance fills this need." @default.
- W2144647583 created "2016-06-24" @default.
- W2144647583 creator A5008235253 @default.
- W2144647583 creator A5054283147 @default.
- W2144647583 creator A5064834854 @default.
- W2144647583 creator A5087206662 @default.
- W2144647583 date "1997-01-01" @default.
- W2144647583 modified "2023-09-26" @default.
- W2144647583 title "Measures of acutance and shape for classification of breast tumors" @default.
- W2144647583 cites W143689192 @default.
- W2144647583 cites W1833179633 @default.
- W2144647583 cites W1889502129 @default.
- W2144647583 cites W1966032954 @default.
- W2144647583 cites W1969788708 @default.
- W2144647583 cites W1976454288 @default.
- W2144647583 cites W1995782683 @default.
- W2144647583 cites W1998150121 @default.
- W2144647583 cites W2001099732 @default.
- W2144647583 cites W2008068589 @default.
- W2144647583 cites W2017075600 @default.
- W2144647583 cites W2018931556 @default.
- W2144647583 cites W2029168317 @default.
- W2144647583 cites W2034254304 @default.
- W2144647583 cites W2035140205 @default.
- W2144647583 cites W2050667405 @default.
- W2144647583 cites W2052657561 @default.
- W2144647583 cites W2053695442 @default.
- W2144647583 cites W2054105681 @default.
- W2144647583 cites W2054227212 @default.
- W2144647583 cites W2058005749 @default.
- W2144647583 cites W2064059885 @default.
- W2144647583 cites W2076287638 @default.
- W2144647583 cites W2082140562 @default.
- W2144647583 cites W2089366793 @default.
- W2144647583 cites W2095394965 @default.
- W2144647583 cites W2110044132 @default.
- W2144647583 cites W2111933145 @default.
- W2144647583 cites W2118561126 @default.
- W2144647583 cites W2124574497 @default.
- W2144647583 cites W2138358654 @default.
- W2144647583 cites W2150642297 @default.
- W2144647583 cites W2159498975 @default.
- W2144647583 cites W2160182247 @default.
- W2144647583 cites W2164710647 @default.
- W2144647583 cites W2262867618 @default.
- W2144647583 cites W70086705 @default.
- W2144647583 cites W91558207 @default.
- W2144647583 doi "https://doi.org/10.1109/42.650876" @default.
- W2144647583 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9533580" @default.
- W2144647583 hasPublicationYear "1997" @default.
- W2144647583 type Work @default.
- W2144647583 sameAs 2144647583 @default.
- W2144647583 citedByCount "293" @default.
- W2144647583 countsByYear W21446475832012 @default.
- W2144647583 countsByYear W21446475832013 @default.
- W2144647583 countsByYear W21446475832014 @default.
- W2144647583 countsByYear W21446475832015 @default.
- W2144647583 countsByYear W21446475832016 @default.
- W2144647583 countsByYear W21446475832017 @default.
- W2144647583 countsByYear W21446475832018 @default.
- W2144647583 countsByYear W21446475832019 @default.
- W2144647583 countsByYear W21446475832020 @default.
- W2144647583 countsByYear W21446475832021 @default.
- W2144647583 countsByYear W21446475832022 @default.
- W2144647583 countsByYear W21446475832023 @default.
- W2144647583 crossrefType "journal-article" @default.
- W2144647583 hasAuthorship W2144647583A5008235253 @default.
- W2144647583 hasAuthorship W2144647583A5054283147 @default.
- W2144647583 hasAuthorship W2144647583A5064834854 @default.
- W2144647583 hasAuthorship W2144647583A5087206662 @default.
- W2144647583 hasConcept C112604564 @default.
- W2144647583 hasConcept C126838900 @default.
- W2144647583 hasConcept C134306372 @default.
- W2144647583 hasConcept C153180895 @default.
- W2144647583 hasConcept C154945302 @default.
- W2144647583 hasConcept C160633673 @default.
- W2144647583 hasConcept C19609008 @default.
- W2144647583 hasConcept C199360897 @default.
- W2144647583 hasConcept C33923547 @default.
- W2144647583 hasConcept C41008148 @default.
- W2144647583 hasConcept C534262118 @default.
- W2144647583 hasConcept C62354387 @default.
- W2144647583 hasConcept C71924100 @default.
- W2144647583 hasConcept C97686452 @default.
- W2144647583 hasConceptScore W2144647583C112604564 @default.
- W2144647583 hasConceptScore W2144647583C126838900 @default.
- W2144647583 hasConceptScore W2144647583C134306372 @default.
- W2144647583 hasConceptScore W2144647583C153180895 @default.
- W2144647583 hasConceptScore W2144647583C154945302 @default.
- W2144647583 hasConceptScore W2144647583C160633673 @default.
- W2144647583 hasConceptScore W2144647583C19609008 @default.
- W2144647583 hasConceptScore W2144647583C199360897 @default.
- W2144647583 hasConceptScore W2144647583C33923547 @default.
- W2144647583 hasConceptScore W2144647583C41008148 @default.
- W2144647583 hasConceptScore W2144647583C534262118 @default.
- W2144647583 hasConceptScore W2144647583C62354387 @default.
- W2144647583 hasConceptScore W2144647583C71924100 @default.
- W2144647583 hasConceptScore W2144647583C97686452 @default.